Home
Class 12
MATHS
If S=(1)/(2) ""^(10)C(0) -""^(10)C(1) +2...

If `S=(1)/(2) ""^(10)C_(0) -""^(10)C_(1) +2""^(10)C_(2)-2^(2)" "^(10)C_(3)…+2^(9)" "^(10)C_(10)`, then S is equal to

A

0

B

`(1)/(2)`

C

`(1)/(2)3^(10)`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ S = \frac{1}{2} \binom{10}{0} - \binom{10}{1} + 2 \binom{10}{2} - 2^2 \binom{10}{3} + \ldots + 2^9 \binom{10}{10} \] ### Step 1: Rewrite the expression for S We can express \( S \) in a more manageable form. Notice that the terms alternate in sign and involve powers of 2 multiplied by binomial coefficients. We can rewrite \( S \) as: \[ S = \sum_{k=0}^{10} (-1)^k 2^{k-1} \binom{10}{k} \] ### Step 2: Multiply S by 2 To find a relationship, we multiply \( S \) by 2: \[ 2S = 2 \cdot \left( \frac{1}{2} \binom{10}{0} - \binom{10}{1} + 2 \binom{10}{2} - 2^2 \binom{10}{3} + \ldots + 2^9 \binom{10}{10} \right) \] This gives: \[ 2S = \binom{10}{0} - 2 \binom{10}{1} + 2^2 \binom{10}{2} - 2^3 \binom{10}{3} + \ldots + 2^{10} \binom{10}{10} \] ### Step 3: Recognize the binomial expansion The expression for \( 2S \) can be recognized as the expansion of \( (1 - 2)^{10} \): \[ (1 - 2)^{10} = (-1)^{10} = 1 \] ### Step 4: Set up the equation Thus, we have: \[ 2S = 1 \] ### Step 5: Solve for S Now we can solve for \( S \): \[ S = \frac{1}{2} \] ### Final Answer Therefore, the value of \( S \) is: \[ S = \frac{1}{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    ML KHANNA|Exercise Problem Set (4) (Assertion/Reason) |1 Videos
  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    ML KHANNA|Exercise Problem Set (4) (TRUE AND FALSE) |11 Videos
  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    ML KHANNA|Exercise Problem Set (3) (MULTIPLE CHOICE QUESTIONS) |12 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos

Similar Questions

Explore conceptually related problems

Sum of the series S = 3^(-1)(""^(10)C_(0))-""^(10)C_(1)+(3)(""^(10)C_(2))-3^(2)(""^(10)C_(3))+…+3^(9)(""^(10)C_(10)) is

The sum ""^(20)C_(0)+""^(20)C_(1)+""^(20)C_(2)+……+""^(20)C_(10) is equal to :

^10(C_(0))^(2)-^(10)(C_(1))^(2)+^(10)(C_(2))^(2)-......-(^(10)C_(9))^(2)+(^(10)C_(10))^(2)=

if .^(2n)C_(2):^(n)C_(2)=9:2 and .^(n)C_(r)=10 , then r is equal to

The sum (1)/(2)10C_(0)-10C_(1)+2.10C_(2)-2^(2)10C_(3)+......+2^(9)10C is

Evaluate ""^(10)C_1 + ""^(10)C_2 + ""^(10)C_3 + ………+""^10C_10

If sum_(r=1)^(10).^(10)C_(r)(2)^(20-r)(3)^(r-1)=(a^(10)-b^(10))/(3) then (a-b) is equal to

"^10(C_0)^2 + "^10(C_1)^2 + "^10(C_2)^2 + ...... + ( "^10C_9)^2 + ( "^10C_10)^2=

In the expansion off (1+x)^(10)=.^(10)C_(0)+.^(10)C_(1)x+.^(10)C_(2)x^(2)+ . . .+.^(10)C_(10)x^(10) , then value of 528[(.^(10)C_(0))/(2)-(.^(10)C_(1))/(3)+(.^(10)C_(2))/(4)-(.^(10)C_(3))/(5)+ . . .+(.^(10)C_(10))/(12)] is equal to________.

ML KHANNA-BINOMIAL THEOREM AND MATHEMATICAL INDUCTION -Problem Set (4) (MULTIPLE CHOICE QUESTIONS)
  1. The value of ""^(13)C(2) +""^(13)C(3) +""^(13)C(4) +…+""^(13)C(13) is

    Text Solution

    |

  2. The sum of last ten coefficients in the expansion of (1+x)^(19) when ...

    Text Solution

    |

  3. If S=(1)/(2) ""^(10)C(0) -""^(10)C(1) +2""^(10)C(2)-2^(2)" "^(10)C(3)…...

    Text Solution

    |

  4. If (1 + x)^(n) = sum(r=0)^(n) C(r) x^(r),(1 + (C(1))/(C(0))) (1 + (C(...

    Text Solution

    |

  5. Let (1 + x)^(n) = sum(r=0)^(n) C(r) x^(r) and , (C(1))/(C(0)) + 2 (...

    Text Solution

    |

  6. The value of sum(r=1)^(10) r. (""^(n)C(r))/(""^(n)C(r-1) is equal to

    Text Solution

    |

  7. If P(n) denotes the product of the binomial coefficients in the expan...

    Text Solution

    |

  8. If C(0), C(1), C(2), ..., C(n) denote the binomial cefficients in t...

    Text Solution

    |

  9. If C(0), C(1), C(2), …. C(n) denote the coefficients in the expansion ...

    Text Solution

    |

  10. Statement-1: sum(r =0)^(n) (r +1)""^(n)C(r) = (n +2) 2^(n-1) Stat...

    Text Solution

    |

  11. If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+…+C(n)x^(n), then C(0)+5C(1)+9C(2)+...

    Text Solution

    |

  12. If (1+x)^(n)= sum(r=0)^(n)C(r )x^(r ) and sum(r =0)^(n) (C(r ))/(r+1)=...

    Text Solution

    |

  13. If (1+x)^(n)=sum(r=0)^(n)*C(r )x^(r ) and sum(r=0)^(n) (-1)^(r ) (C(r ...

    Text Solution

    |

  14. The sum of the series .^(20)C(0)-.^(20)C(1)+ .^(20)C(2)-.^(20)C(3)+...

    Text Solution

    |

  15. The sum to (n+1) terms of the series (C(0))/(2)-(C(1))/(3)+(C(2))/(...

    Text Solution

    |

  16. If C(r ) stands for ""^(n)C(r ), then the sum of first (n+1) terms of...

    Text Solution

    |

  17. The value of the sum of the series 3.""^(n)C(0)-8" "^(n)C(1)+13" "^(n...

    Text Solution

    |

  18. If (1+x)^(n) = C(0)+C(1)x + C(2) x^(2) +...+C(n)x^(n) then C(0)""^...

    Text Solution

    |

  19. If n is a positive integer and C(k)=""^(n)C(k), then the value of sum(...

    Text Solution

    |

  20. The vaule of sum(r=0)^(n-1) (""^(C(r))/(""^(n)C(r) + ""^(n)C(r +1)) ...

    Text Solution

    |