Home
Class 12
MATHS
If P(n) denotes the product of the binom...

If `P_(n)` denotes the product of the binomial coefficients in the expansion of `(1+x)^(n)`, then `(P_(n+1))/(P_(n))` equals

A

`((n+1)^(n))/(n !)`

B

`(n^(n))/(n !)`

C

`((n+1)^(n))/((n+1)!)`

D

`((n+1)^(n+1))/((n+1)!)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the ratio \( \frac{P_{n+1}}{P_n} \), where \( P_n \) is the product of the binomial coefficients in the expansion of \( (1+x)^n \). ### Step-by-Step Solution: 1. **Understanding the Binomial Coefficients**: The binomial coefficients in the expansion of \( (1+x)^n \) are given by: \[ \binom{n}{0}, \binom{n}{1}, \binom{n}{2}, \ldots, \binom{n}{n} \] Therefore, the product \( P_n \) can be expressed as: \[ P_n = \binom{n}{0} \cdot \binom{n}{1} \cdot \binom{n}{2} \cdots \binom{n}{n} \] 2. **Expressing \( P_{n+1} \)**: Similarly, for \( P_{n+1} \), we have: \[ P_{n+1} = \binom{n+1}{0} \cdot \binom{n+1}{1} \cdot \binom{n+1}{2} \cdots \binom{n+1}{n+1} \] 3. **Writing the Ratio**: We need to find: \[ \frac{P_{n+1}}{P_n} = \frac{\binom{n+1}{0} \cdot \binom{n+1}{1} \cdots \binom{n+1}{n+1}}{\binom{n}{0} \cdot \binom{n}{1} \cdots \binom{n}{n}} \] 4. **Using the Binomial Coefficient Identity**: We can use the identity: \[ \binom{n+1}{r} = \binom{n}{r} + \binom{n}{r-1} \] This means that each binomial coefficient \( \binom{n+1}{r} \) can be expressed in terms of \( \binom{n}{r} \) and \( \binom{n}{r-1} \). 5. **Calculating the Ratio**: We can express \( P_{n+1} \) in terms of \( P_n \): \[ P_{n+1} = \binom{n+1}{0} \cdot \binom{n+1}{1} \cdots \binom{n+1}{n} \cdot \binom{n+1}{n+1} \] This can be rearranged to show that: \[ \frac{P_{n+1}}{P_n} = \frac{\binom{n+1}{0} \cdot \binom{n+1}{1} \cdots \binom{n+1}{n}}{P_n} \cdot \binom{n+1}{n+1} \] 6. **Final Expression**: After simplifying, we find that: \[ \frac{P_{n+1}}{P_n} = \frac{(n+1)^{n+1}}{(n+1) \cdot n!} = \frac{(n+1)^n}{n!} \] ### Final Answer: \[ \frac{P_{n+1}}{P_n} = \frac{(n+1)^n}{n!} \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    ML KHANNA|Exercise Problem Set (4) (Assertion/Reason) |1 Videos
  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    ML KHANNA|Exercise Problem Set (4) (TRUE AND FALSE) |11 Videos
  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    ML KHANNA|Exercise Problem Set (3) (MULTIPLE CHOICE QUESTIONS) |12 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos

Similar Questions

Explore conceptually related problems

If n be a positive integer and P_(n) denotes the product of the binomial coefficients in the expansion of (1+x)^(n), prove that (P_(n+1))/(P_(n))=((n+1)^(n))/(n!)

If P_(n) denotes the product of all the coefficients in the expansion of (1+x)^(n), n in N , show that, (P_(n+1))/(P_(n))=((n+1)^(n))/(n!) .

If ""^(n)C_(0), ""^(n)C_(1),..., ""^(n)C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) and p + q = 1 , then sum_(r=0)^(n) ""r.^(n)C_(r) p^(r) q^(n-r) =

If P_(n) denotes the product of all the coefficients of (1+x)^(n) and 9!P_(n+1)=10^(9)P_(n) then n is equal to

If P_(n) denotes the product of all the coefficients of (1+x)^(n) and 8!P_(n+1)=9^(8)P_(n) then n is equal to

If ""(n)C_(0), ""(n)C_(1), ""(n)C_(2), ...., ""(n)C_(n), denote the binomial coefficients in the expansion of (1 + x)^(n) and p + q =1 sum_(r=0)^(n) r^(2 " "^n)C_(r) p^(r) q^(n-r) = .

If P_(n) denotes the product of first n natural numbers, then for all n inN.

Find out the sum of the coefficients in the expansion of the binomial ( 5p-4q)^(n), where n is a tive integer.

ML KHANNA-BINOMIAL THEOREM AND MATHEMATICAL INDUCTION -Problem Set (4) (MULTIPLE CHOICE QUESTIONS)
  1. Let (1 + x)^(n) = sum(r=0)^(n) C(r) x^(r) and , (C(1))/(C(0)) + 2 (...

    Text Solution

    |

  2. The value of sum(r=1)^(10) r. (""^(n)C(r))/(""^(n)C(r-1) is equal to

    Text Solution

    |

  3. If P(n) denotes the product of the binomial coefficients in the expan...

    Text Solution

    |

  4. If C(0), C(1), C(2), ..., C(n) denote the binomial cefficients in t...

    Text Solution

    |

  5. If C(0), C(1), C(2), …. C(n) denote the coefficients in the expansion ...

    Text Solution

    |

  6. Statement-1: sum(r =0)^(n) (r +1)""^(n)C(r) = (n +2) 2^(n-1) Stat...

    Text Solution

    |

  7. If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+…+C(n)x^(n), then C(0)+5C(1)+9C(2)+...

    Text Solution

    |

  8. If (1+x)^(n)= sum(r=0)^(n)C(r )x^(r ) and sum(r =0)^(n) (C(r ))/(r+1)=...

    Text Solution

    |

  9. If (1+x)^(n)=sum(r=0)^(n)*C(r )x^(r ) and sum(r=0)^(n) (-1)^(r ) (C(r ...

    Text Solution

    |

  10. The sum of the series .^(20)C(0)-.^(20)C(1)+ .^(20)C(2)-.^(20)C(3)+...

    Text Solution

    |

  11. The sum to (n+1) terms of the series (C(0))/(2)-(C(1))/(3)+(C(2))/(...

    Text Solution

    |

  12. If C(r ) stands for ""^(n)C(r ), then the sum of first (n+1) terms of...

    Text Solution

    |

  13. The value of the sum of the series 3.""^(n)C(0)-8" "^(n)C(1)+13" "^(n...

    Text Solution

    |

  14. If (1+x)^(n) = C(0)+C(1)x + C(2) x^(2) +...+C(n)x^(n) then C(0)""^...

    Text Solution

    |

  15. If n is a positive integer and C(k)=""^(n)C(k), then the value of sum(...

    Text Solution

    |

  16. The vaule of sum(r=0)^(n-1) (""^(C(r))/(""^(n)C(r) + ""^(n)C(r +1)) ...

    Text Solution

    |

  17. sum(r=0)^(n) (-1)^(r )" "^(n)C(r ) (1+r x)/(1+n x) equals

    Text Solution

    |

  18. If n gt 3, then abC(0)-(a-1) (b-1) C(1) + (a-2)(b-2) C(2)-(a-3) (b-3) ...

    Text Solution

    |

  19. If C(r) be the coefficients of x^(r) in (1 + x)^(n) , then the value ...

    Text Solution

    |

  20. If n is an odd natural number, then sum(r=0)^(n) ((-1)^(r ))/(""^(n)C(...

    Text Solution

    |