Home
Class 12
MATHS
If C(0), C(1), C(2), …. C(n) denote the ...

If `C_(0), C_(1), C_(2), …. C_(n)` denote the coefficients in the expansion of `(1+x)^(n)`, then the value of `sum_(r=0)^(n) (r+1)C_(r )` is

A

`n.2^(n)`

B

`(n+1).2^(n-1)`

C

`(n+2) 2^(n-1)`

D

`(n+2) 2^(n-2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the sum: \[ \sum_{r=0}^{n} (r+1) C_r \] where \( C_r \) are the coefficients in the expansion of \( (1+x)^n \). ### Step 1: Understanding the Coefficients The coefficients \( C_r \) correspond to the binomial coefficients, which can be expressed as: \[ C_r = \binom{n}{r} \] Thus, we can rewrite the sum as: \[ \sum_{r=0}^{n} (r+1) \binom{n}{r} \] ### Step 2: Splitting the Sum We can split the sum into two parts: \[ \sum_{r=0}^{n} (r+1) \binom{n}{r} = \sum_{r=0}^{n} r \binom{n}{r} + \sum_{r=0}^{n} \binom{n}{r} \] ### Step 3: Evaluating the Second Sum The second sum is straightforward: \[ \sum_{r=0}^{n} \binom{n}{r} = 2^n \] This is a well-known result from the binomial theorem. ### Step 4: Evaluating the First Sum For the first sum \( \sum_{r=0}^{n} r \binom{n}{r} \), we can use the identity: \[ r \binom{n}{r} = n \binom{n-1}{r-1} \] Thus, we can rewrite the sum as: \[ \sum_{r=0}^{n} r \binom{n}{r} = n \sum_{r=1}^{n} \binom{n-1}{r-1} = n \sum_{k=0}^{n-1} \binom{n-1}{k} = n \cdot 2^{n-1} \] ### Step 5: Combining the Results Now we can combine both parts of the sum: \[ \sum_{r=0}^{n} (r+1) \binom{n}{r} = n \cdot 2^{n-1} + 2^n \] ### Step 6: Simplifying the Expression We can factor out \( 2^{n-1} \): \[ = 2^{n-1} (n + 2) \] ### Final Result Thus, the value of the sum is: \[ \sum_{r=0}^{n} (r+1) C_r = (n + 2) \cdot 2^{n-1} \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    ML KHANNA|Exercise Problem Set (4) (Assertion/Reason) |1 Videos
  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    ML KHANNA|Exercise Problem Set (4) (TRUE AND FALSE) |11 Videos
  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    ML KHANNA|Exercise Problem Set (3) (MULTIPLE CHOICE QUESTIONS) |12 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos

Similar Questions

Explore conceptually related problems

If C_(o)C_(1),C_(2),......,C_(n) denote the binomial coefficients in the expansion of (1+x)^(n), then the value of sum_(r=0)^(n)(r+1)C_(r) is

If C_(0), C_(1), C_(2), …, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(r=0)^(n)sum_(s=0)^(n)C_(r)C_(s) =

If C_(0), C_(1), C_(2),…, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(r=0)^(n)sum_(s=0)^(n)(C_(r) +C_(s))

If C_(0), C_(1), C_(2), …, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(0 ler )^(n)sum_(lt s len)^(n)C_(r)C_(s) =.

If C_(0),C_(1),C_(2),.........,C_(n) denote the binomial coefficients in the expansion of (1+1)^(n), then sum_(0<=r

If C_(r) be the coefficients of x^(r) in (1 + x)^(n) , then the value of sum_(r=0)^(n) (r + 1)^(2) C_(r) , is

If C_(0), C_(1), c_(2),...,C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then C_(0) + (C_(1))/(2) + C_(2)/(3) + ...+ (C_(n))/(n+1) or, sum_(r=0)^(n) (C_(r))/(r+ 1)

If C_(0),C_(1),C_(2)..C_(n) denote the coefficients in the binomial expansion of (1+x)^(n), then C_(0)+2.C_(1)+3.C_(2)+.(n+1)C_(n)

ML KHANNA-BINOMIAL THEOREM AND MATHEMATICAL INDUCTION -Problem Set (4) (MULTIPLE CHOICE QUESTIONS)
  1. If P(n) denotes the product of the binomial coefficients in the expan...

    Text Solution

    |

  2. If C(0), C(1), C(2), ..., C(n) denote the binomial cefficients in t...

    Text Solution

    |

  3. If C(0), C(1), C(2), …. C(n) denote the coefficients in the expansion ...

    Text Solution

    |

  4. Statement-1: sum(r =0)^(n) (r +1)""^(n)C(r) = (n +2) 2^(n-1) Stat...

    Text Solution

    |

  5. If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+…+C(n)x^(n), then C(0)+5C(1)+9C(2)+...

    Text Solution

    |

  6. If (1+x)^(n)= sum(r=0)^(n)C(r )x^(r ) and sum(r =0)^(n) (C(r ))/(r+1)=...

    Text Solution

    |

  7. If (1+x)^(n)=sum(r=0)^(n)*C(r )x^(r ) and sum(r=0)^(n) (-1)^(r ) (C(r ...

    Text Solution

    |

  8. The sum of the series .^(20)C(0)-.^(20)C(1)+ .^(20)C(2)-.^(20)C(3)+...

    Text Solution

    |

  9. The sum to (n+1) terms of the series (C(0))/(2)-(C(1))/(3)+(C(2))/(...

    Text Solution

    |

  10. If C(r ) stands for ""^(n)C(r ), then the sum of first (n+1) terms of...

    Text Solution

    |

  11. The value of the sum of the series 3.""^(n)C(0)-8" "^(n)C(1)+13" "^(n...

    Text Solution

    |

  12. If (1+x)^(n) = C(0)+C(1)x + C(2) x^(2) +...+C(n)x^(n) then C(0)""^...

    Text Solution

    |

  13. If n is a positive integer and C(k)=""^(n)C(k), then the value of sum(...

    Text Solution

    |

  14. The vaule of sum(r=0)^(n-1) (""^(C(r))/(""^(n)C(r) + ""^(n)C(r +1)) ...

    Text Solution

    |

  15. sum(r=0)^(n) (-1)^(r )" "^(n)C(r ) (1+r x)/(1+n x) equals

    Text Solution

    |

  16. If n gt 3, then abC(0)-(a-1) (b-1) C(1) + (a-2)(b-2) C(2)-(a-3) (b-3) ...

    Text Solution

    |

  17. If C(r) be the coefficients of x^(r) in (1 + x)^(n) , then the value ...

    Text Solution

    |

  18. If n is an odd natural number, then sum(r=0)^(n) ((-1)^(r ))/(""^(n)C(...

    Text Solution

    |

  19. If a(n) = sum(r=0)^(n) (1)/(""^(n)C(r)) , find the value of sum(...

    Text Solution

    |

  20. With usual notations C(0)C(1)+C(1)C(2)+…+C(n-1)C(n)=

    Text Solution

    |