Home
Class 12
MATHS
If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+…+C(n)...

If `(1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+…+C_(n)x^(n)`, then `C_(0)+5C_(1)+9C_(2)+ …+(4n+1)C_(n)=`

A

`n.2^(n)`

B

`(n+1)2^(n)`

C

`(2n+1)2^(n)`

D

`(4n+1)2^(n)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( C_0 + 5C_1 + 9C_2 + \ldots + (4n + 1)C_n \) given that \( (1+x)^n = C_0 + C_1x + C_2x^2 + \ldots + C_nx^n \). ### Step-by-Step Solution: 1. **Substitution**: We start by substituting \( x = y^2 \) in the binomial expansion: \[ (1 + y^2)^n = C_0 + C_1y^2 + C_2y^4 + \ldots + C_ny^{2n} \] This gives us: \[ y(1 + y^4)^n = C_0y + C_1y^3 + C_2y^5 + \ldots + C_ny^{2n + 1} \] 2. **Differentiation**: Next, we differentiate both sides with respect to \( y \): \[ \frac{d}{dy}[y(1 + y^4)^n] = (1 + y^4)^n + y \cdot n(1 + y^4)^{n-1} \cdot 4y^3 \] The left-hand side becomes: \[ (1 + y^4)^n + 4ny^4(1 + y^4)^{n-1} \] 3. **Evaluating at \( y = 1 \)**: Now we substitute \( y = 1 \): \[ (1 + 1^4)^n + 4n \cdot 1^4(1 + 1^4)^{n-1} = 2^n + 4n \cdot 2^{n-1} \] This simplifies to: \[ 2^n + 4n \cdot 2^{n-1} = 2^n + 2n \cdot 2^n = (1 + 2n)2^n \] 4. **Final Result**: Thus, we find that: \[ C_0 + 5C_1 + 9C_2 + \ldots + (4n + 1)C_n = (1 + 2n)2^n \] ### Conclusion: The value of \( C_0 + 5C_1 + 9C_2 + \ldots + (4n + 1)C_n \) is \( (1 + 2n)2^n \).
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    ML KHANNA|Exercise Problem Set (4) (Assertion/Reason) |1 Videos
  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    ML KHANNA|Exercise Problem Set (4) (TRUE AND FALSE) |11 Videos
  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    ML KHANNA|Exercise Problem Set (3) (MULTIPLE CHOICE QUESTIONS) |12 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos

Similar Questions

Explore conceptually related problems

If (1 + x)^(n) = C_(0) + C_(1) x C_(2) x^(2) +…+ C_(n) x^(n) , then the sum C_(0) + (C_(0)+C_(1))+…+(C_(0) +C_(1) +…+C_(n -1)) is equal to

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0) C_(n) - C_(1) C_(n-1) + C_(2) C_(n-2) - …+ (-1)^(n) C_(n) C_(0) = 0 or (-1)^(n//2) (n!)/((n//2)!(n//2)!) , according as n is odd or even .

If (1 + x)^(n) = C_(0) + C_(1)x + C_(2) x^(2) + …+ C_(n) x^(n) , then for n odd, C_(1)^(2) + C_(3)^(2) + C_(5)^(2) +....+ C_(n)^(2) is equal to

(1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+….+C_(n)x^(n) then C_(0)C_(2)+C_(1)C_(3)+C_(2)C_(4)+…..+C_(n-2)C_(n) is equal to :

ML KHANNA-BINOMIAL THEOREM AND MATHEMATICAL INDUCTION -Problem Set (4) (MULTIPLE CHOICE QUESTIONS)
  1. If C(0), C(1), C(2), …. C(n) denote the coefficients in the expansion ...

    Text Solution

    |

  2. Statement-1: sum(r =0)^(n) (r +1)""^(n)C(r) = (n +2) 2^(n-1) Stat...

    Text Solution

    |

  3. If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+…+C(n)x^(n), then C(0)+5C(1)+9C(2)+...

    Text Solution

    |

  4. If (1+x)^(n)= sum(r=0)^(n)C(r )x^(r ) and sum(r =0)^(n) (C(r ))/(r+1)=...

    Text Solution

    |

  5. If (1+x)^(n)=sum(r=0)^(n)*C(r )x^(r ) and sum(r=0)^(n) (-1)^(r ) (C(r ...

    Text Solution

    |

  6. The sum of the series .^(20)C(0)-.^(20)C(1)+ .^(20)C(2)-.^(20)C(3)+...

    Text Solution

    |

  7. The sum to (n+1) terms of the series (C(0))/(2)-(C(1))/(3)+(C(2))/(...

    Text Solution

    |

  8. If C(r ) stands for ""^(n)C(r ), then the sum of first (n+1) terms of...

    Text Solution

    |

  9. The value of the sum of the series 3.""^(n)C(0)-8" "^(n)C(1)+13" "^(n...

    Text Solution

    |

  10. If (1+x)^(n) = C(0)+C(1)x + C(2) x^(2) +...+C(n)x^(n) then C(0)""^...

    Text Solution

    |

  11. If n is a positive integer and C(k)=""^(n)C(k), then the value of sum(...

    Text Solution

    |

  12. The vaule of sum(r=0)^(n-1) (""^(C(r))/(""^(n)C(r) + ""^(n)C(r +1)) ...

    Text Solution

    |

  13. sum(r=0)^(n) (-1)^(r )" "^(n)C(r ) (1+r x)/(1+n x) equals

    Text Solution

    |

  14. If n gt 3, then abC(0)-(a-1) (b-1) C(1) + (a-2)(b-2) C(2)-(a-3) (b-3) ...

    Text Solution

    |

  15. If C(r) be the coefficients of x^(r) in (1 + x)^(n) , then the value ...

    Text Solution

    |

  16. If n is an odd natural number, then sum(r=0)^(n) ((-1)^(r ))/(""^(n)C(...

    Text Solution

    |

  17. If a(n) = sum(r=0)^(n) (1)/(""^(n)C(r)) , find the value of sum(...

    Text Solution

    |

  18. With usual notations C(0)C(1)+C(1)C(2)+…+C(n-1)C(n)=

    Text Solution

    |

  19. With usual notations C(0)C(2)+C(1)C(3)+C(2)C(4)+…+C(n-2)C(n)=

    Text Solution

    |

  20. With usual notations, C(0)C(r )+C(1)C(r+1) +C(2)C(r+2) +…+C(n-r)C(n)...

    Text Solution

    |