Home
Class 12
MATHS
The sum to (n+1) terms of the series ...

The sum to (n+1) terms of the series
`(C_(0))/(2)-(C_(1))/(3)+(C_(2))/(4)-(C_(3))/(5)+…` is

A

`(1)/(n+1)`

B

`(1)/(n+2)`

C

`(1)/(n(n+1))`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum to (n + 1) terms of the series \[ S = \frac{C_0}{2} - \frac{C_1}{3} + \frac{C_2}{4} - \frac{C_3}{5} + \ldots \] we can follow these steps: ### Step 1: Understand the series The series consists of binomial coefficients \(C_k\) divided by consecutive integers starting from 2. The general term can be expressed as \((-1)^k \frac{C_k}{k + 2}\). ### Step 2: Use the Binomial Theorem Recall the binomial expansion of \((1 - x)^n\): \[ (1 - x)^n = \sum_{k=0}^{n} C_k (-x)^k \] ### Step 3: Multiply by \(x\) and Integrate To find the desired sum, we multiply both sides of the binomial expansion by \(x\) and integrate from 0 to 1: \[ \int_0^1 x(1 - x)^n \, dx = \int_0^1 \left( C_0 x - C_1 x^2 + C_2 x^3 - C_3 x^4 + \ldots \right) \, dx \] ### Step 4: Evaluate the left-hand side The left-hand side can be evaluated using integration by parts or a known formula for the integral: \[ \int_0^1 x(1 - x)^n \, dx = \frac{1}{(n + 1)(n + 2)} \] ### Step 5: Evaluate the right-hand side The right-hand side becomes: \[ \int_0^1 \left( C_0 x - C_1 x^2 + C_2 x^3 - C_3 x^4 + \ldots \right) \, dx \] This results in: \[ \frac{C_0}{2} - \frac{C_1}{3} + \frac{C_2}{4} - \frac{C_3}{5} + \ldots \] ### Step 6: Set the two sides equal Now we have: \[ \frac{1}{(n + 1)(n + 2)} = \frac{C_0}{2} - \frac{C_1}{3} + \frac{C_2}{4} - \frac{C_3}{5} + \ldots \] ### Step 7: Final Result Thus, we conclude: \[ \frac{C_0}{2} - \frac{C_1}{3} + \frac{C_2}{4} - \frac{C_3}{5} + \ldots = \frac{1}{(n + 1)(n + 2)} \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    ML KHANNA|Exercise Problem Set (4) (Assertion/Reason) |1 Videos
  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    ML KHANNA|Exercise Problem Set (4) (TRUE AND FALSE) |11 Videos
  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    ML KHANNA|Exercise Problem Set (3) (MULTIPLE CHOICE QUESTIONS) |12 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos

Similar Questions

Explore conceptually related problems

(C_(0))/(1*2)+(C_(1))/(2*3)+(C_(2))/(3*4)+...+(C_(n))/((n+1)(n+2))=

(C_(0))/(1.2)+(C_(1))/(2.3)+(C_(2))/(3.4)+......*(C_(n))/((n+1)(n+2))=

If C_(0), C_(1) C_(2) ….., denote the binomial coefficients in the expansion of (1 + x)^(n) , then (C_(0))/(2) - (C_(1))/(3) + (C_(2))/(4)- (C_(3))/(5)+...+ (-1)^(n)(C_(n))/(n+2) =

If C_(r) stands for nC_(r), then the sum of first (n+1) terms of the series aC_(0)-(a+d)C_(1)+(a+2d)C_(2)-(a+3d)C_(3)+...... is

If C_(0),C_(1),C_(2),...,C_(n) denote the binomial coefficientsin the expansion of (1+x)^(n), then (C_(0))/(2)-(C_(1))/(3)+(C_(2))/(4)-(C_(3))/(5)+......+(-1)^(n)(C_(n))/(n+2)=

If n is odd, then sum of the series C_(0)^(2)-C_(1)^(2)+C_(2)^(2)-C_(2)^(3)+…..+(-1)^(n)C_(n)^(2) is

If C_(0), C_(1), C_(2),C_(3),..., C_(n) are the binomial coefficients in the expansion of (C_(0))/(1)+(C_(2))/(3)+(C_(4))/(5)+(C_(6))/(7)+..., is equal to

If C_(0), C_(1), C_(2),..., C_(n) are binomial coefficients in the expansion of (1 + x)^(n), then the value of C_(0) - (C_(1))/(2) + (C_(2))/(3) - (C_(3))/(4) +...+ (-1)^(n) (C_(n))/(n+1) is

ML KHANNA-BINOMIAL THEOREM AND MATHEMATICAL INDUCTION -Problem Set (4) (MULTIPLE CHOICE QUESTIONS)
  1. If (1+x)^(n)=sum(r=0)^(n)*C(r )x^(r ) and sum(r=0)^(n) (-1)^(r ) (C(r ...

    Text Solution

    |

  2. The sum of the series .^(20)C(0)-.^(20)C(1)+ .^(20)C(2)-.^(20)C(3)+...

    Text Solution

    |

  3. The sum to (n+1) terms of the series (C(0))/(2)-(C(1))/(3)+(C(2))/(...

    Text Solution

    |

  4. If C(r ) stands for ""^(n)C(r ), then the sum of first (n+1) terms of...

    Text Solution

    |

  5. The value of the sum of the series 3.""^(n)C(0)-8" "^(n)C(1)+13" "^(n...

    Text Solution

    |

  6. If (1+x)^(n) = C(0)+C(1)x + C(2) x^(2) +...+C(n)x^(n) then C(0)""^...

    Text Solution

    |

  7. If n is a positive integer and C(k)=""^(n)C(k), then the value of sum(...

    Text Solution

    |

  8. The vaule of sum(r=0)^(n-1) (""^(C(r))/(""^(n)C(r) + ""^(n)C(r +1)) ...

    Text Solution

    |

  9. sum(r=0)^(n) (-1)^(r )" "^(n)C(r ) (1+r x)/(1+n x) equals

    Text Solution

    |

  10. If n gt 3, then abC(0)-(a-1) (b-1) C(1) + (a-2)(b-2) C(2)-(a-3) (b-3) ...

    Text Solution

    |

  11. If C(r) be the coefficients of x^(r) in (1 + x)^(n) , then the value ...

    Text Solution

    |

  12. If n is an odd natural number, then sum(r=0)^(n) ((-1)^(r ))/(""^(n)C(...

    Text Solution

    |

  13. If a(n) = sum(r=0)^(n) (1)/(""^(n)C(r)) , find the value of sum(...

    Text Solution

    |

  14. With usual notations C(0)C(1)+C(1)C(2)+…+C(n-1)C(n)=

    Text Solution

    |

  15. With usual notations C(0)C(2)+C(1)C(3)+C(2)C(4)+…+C(n-2)C(n)=

    Text Solution

    |

  16. With usual notations, C(0)C(r )+C(1)C(r+1) +C(2)C(r+2) +…+C(n-r)C(n)...

    Text Solution

    |

  17. The coefficient of x^(n) y^(n) in the expansion of [(1 + x)(1+y) (x...

    Text Solution

    |

  18. The coefficient of x^r[0lt=rlt=(n-1)] in lthe expansion of (x+3)^(n-1)...

    Text Solution

    |

  19. If m,n,r are positive integers such that r lt m,n, then ""^(m)C(r)...

    Text Solution

    |

  20. The sum sum(i=0)^(m)""^(10)C(i)xx""^(20)C(m-i)("where " ""^(p)C(q)=0" ...

    Text Solution

    |