Home
Class 12
MATHS
With usual notations C(0)C(2)+C(1)C(3)...

With usual notations
`C_(0)C_(2)+C_(1)C_(3)+C_(2)C_(4)+…+C_(n-2)C_(n)=`

A

`((2n)!)/((n!)^(2))`

B

`((2n)!)/((n-1)!(n+1)!)`

C

`((2n)!)/((n-2)! (n+2)!)`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( C_0 C_2 + C_1 C_3 + C_2 C_4 + \ldots + C_{n-2} C_n \), we can use a combinatorial identity related to the binomial coefficients. ### Step-by-step Solution: 1. **Understanding the Terms**: The expression consists of products of binomial coefficients. The term \( C_k \) represents the binomial coefficient \( \binom{n}{k} \). 2. **Rewriting the Expression**: We can rewrite the expression as: \[ \sum_{k=0}^{n-2} C_k C_{k+2} \] This means we are summing the products of pairs of binomial coefficients. 3. **Using the Binomial Coefficient Identity**: There is a known identity for the sum of products of binomial coefficients: \[ \sum_{k=0}^{r} C_k C_{r-k} = C_r \] In our case, we can relate our sum to a specific case of this identity. 4. **Applying the Identity**: We can express our sum in terms of a shifted index. Notice that: \[ C_k C_{k+2} = C_k C_{(n-2)-(k-2)} = C_k C_{n-2-k+2} \] This suggests that we can relate our sum to a binomial coefficient for \( n \). 5. **Finding the Final Expression**: By applying the identity and adjusting for the indices, we find that: \[ C_0 C_2 + C_1 C_3 + C_2 C_4 + \ldots + C_{n-2} C_n = C_{n+2} \] This means that the original expression simplifies to: \[ \sum_{k=0}^{n-2} C_k C_{k+2} = \frac{1}{2} C_{n+2} \] 6. **Final Result**: Therefore, the final result of the sum \( C_0 C_2 + C_1 C_3 + C_2 C_4 + \ldots + C_{n-2} C_n \) is: \[ \frac{1}{2} C_{n+2} \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    ML KHANNA|Exercise Problem Set (4) (Assertion/Reason) |1 Videos
  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    ML KHANNA|Exercise Problem Set (4) (TRUE AND FALSE) |11 Videos
  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    ML KHANNA|Exercise Problem Set (3) (MULTIPLE CHOICE QUESTIONS) |12 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos

Similar Questions

Explore conceptually related problems

C_(0)C_(1)+C_(1)C_(2)+C_(2)C_(3)+...+C_(n-1)C_(n)

C_(0)C_(2)+C_(1)C_(3)+C_(2)C_(4)+c_(3)C_(5)+...+C_(n-2)C_(n)

(1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+….+C_(n)x^(n) then C_(0)C_(2)+C_(1)C_(3)+C_(2)C_(4)+…..+C_(n-2)C_(n) is equal to :

If quad (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+...+C_(n)x^(n), then C_(0)C_(2)+C_(1)C_(3)+C_(2)C_(4)+...+C_(n-2)C_(n)=((2n)!)/((n!)^(2)) b.((2n)!)/((n-1)!(n+1)!) c.((2n)!)/((n-2)!(n+2)!) d.none of these

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0) C_(n) - C_(1) C_(n-1) + C_(2) C_(n-2) - …+ (-1)^(n) C_(n) C_(0) = 0 or (-1)^(n//2) (n!)/((n//2)!(n//2)!) , according as n is odd or even .

Prove that (C_(0)+C_(1))(C_(1)+C_(2))(C_(2)+C_(3))(C_(n-1)+C_(n))=((n+1)^(n))/(n!)*c_(0)*C_(1)*C_(2).........

C_(0)+(C_(1))/(2)+(C_(2))/(3)+...+(C_(n))/(n+1)=

ML KHANNA-BINOMIAL THEOREM AND MATHEMATICAL INDUCTION -Problem Set (4) (MULTIPLE CHOICE QUESTIONS)
  1. If C(r ) stands for ""^(n)C(r ), then the sum of first (n+1) terms of...

    Text Solution

    |

  2. The value of the sum of the series 3.""^(n)C(0)-8" "^(n)C(1)+13" "^(n...

    Text Solution

    |

  3. If (1+x)^(n) = C(0)+C(1)x + C(2) x^(2) +...+C(n)x^(n) then C(0)""^...

    Text Solution

    |

  4. If n is a positive integer and C(k)=""^(n)C(k), then the value of sum(...

    Text Solution

    |

  5. The vaule of sum(r=0)^(n-1) (""^(C(r))/(""^(n)C(r) + ""^(n)C(r +1)) ...

    Text Solution

    |

  6. sum(r=0)^(n) (-1)^(r )" "^(n)C(r ) (1+r x)/(1+n x) equals

    Text Solution

    |

  7. If n gt 3, then abC(0)-(a-1) (b-1) C(1) + (a-2)(b-2) C(2)-(a-3) (b-3) ...

    Text Solution

    |

  8. If C(r) be the coefficients of x^(r) in (1 + x)^(n) , then the value ...

    Text Solution

    |

  9. If n is an odd natural number, then sum(r=0)^(n) ((-1)^(r ))/(""^(n)C(...

    Text Solution

    |

  10. If a(n) = sum(r=0)^(n) (1)/(""^(n)C(r)) , find the value of sum(...

    Text Solution

    |

  11. With usual notations C(0)C(1)+C(1)C(2)+…+C(n-1)C(n)=

    Text Solution

    |

  12. With usual notations C(0)C(2)+C(1)C(3)+C(2)C(4)+…+C(n-2)C(n)=

    Text Solution

    |

  13. With usual notations, C(0)C(r )+C(1)C(r+1) +C(2)C(r+2) +…+C(n-r)C(n)...

    Text Solution

    |

  14. The coefficient of x^(n) y^(n) in the expansion of [(1 + x)(1+y) (x...

    Text Solution

    |

  15. The coefficient of x^r[0lt=rlt=(n-1)] in lthe expansion of (x+3)^(n-1)...

    Text Solution

    |

  16. If m,n,r are positive integers such that r lt m,n, then ""^(m)C(r)...

    Text Solution

    |

  17. The sum sum(i=0)^(m)""^(10)C(i)xx""^(20)C(m-i)("where " ""^(p)C(q)=0" ...

    Text Solution

    |

  18. The value of of sum of the series ""^(14)C(0).""^(15)C(1)+""^(14)C(1)...

    Text Solution

    |

  19. The value of (30 0)(30 10)-(30 1)(30 11)+(30 2)(30 12)++(30 20)(30 30)...

    Text Solution

    |

  20. If C(r )=(""^(101)C(r )) then E=sum(r=0)^(100) (-1)^(r ) C(r ) C(r+1)

    Text Solution

    |