Home
Class 12
MATHS
With usual notations, C(0)C(r )+C(1)C(...

With usual notations,
`C_(0)C_(r )+C_(1)C_(r+1) +C_(2)C_(r+2) +…+C_(n-r)C_(n)=`

A

`((2n)!)/((n!)^(2))`

B

`((2n)!)/((n-r)! (n+r)!)`

C

`((2n)!)/([(n-r)!]^(2))`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given expression \( C_0 C_r + C_1 C_{r+1} + C_2 C_{r+2} + \ldots + C_{n-r} C_n \), we will use the Binomial Theorem and properties of binomial coefficients. ### Step-by-Step Solution: 1. **Understanding the Expression**: The expression involves binomial coefficients \( C_k \), which is defined as \( C_k = \binom{n}{k} \). The goal is to simplify the sum \( S = C_0 C_r + C_1 C_{r+1} + C_2 C_{r+2} + \ldots + C_{n-r} C_n \). 2. **Using the Binomial Theorem**: Recall the Binomial Theorem states: \[ (x + y)^n = \sum_{k=0}^{n} C_k x^k y^{n-k} \] We can apply this theorem to two different expansions: - \( (1 + x)^n = \sum_{k=0}^{n} C_k x^k \) - \( (1 + y)^n = \sum_{k=0}^{n} C_k y^k \) 3. **Multiplying the Two Expansions**: We can multiply the two expansions: \[ (1 + x)^n (1 + y)^n = \sum_{k=0}^{n} C_k x^k \sum_{j=0}^{n} C_j y^j \] This results in: \[ = \sum_{m=0}^{2n} \left( \sum_{k=0}^{m} C_k C_{m-k} \right) x^k y^{m-k} \] 4. **Identifying the Coefficient**: To find the coefficient of \( x^{r} y^{n-r} \) in the expanded product, we set \( x = 1 \) and \( y = 1 \): \[ (1 + 1)^n (1 + 1)^n = 2^n \cdot 2^n = 4^n \] The coefficient of \( x^{n-r} \) in this expansion corresponds to our original expression. 5. **Finding the Coefficient**: The coefficient of \( x^{n-r} \) in the expansion of \( (1 + x)^{2n} \) is given by \( C_{n-r} \) from the expansion: \[ (1 + x)^{2n} = \sum_{k=0}^{2n} C_k x^k \] Thus, the coefficient of \( x^{n-r} \) is \( C_{n-r} \). 6. **Final Result**: Therefore, we conclude that: \[ S = C_0 C_r + C_1 C_{r+1} + C_2 C_{r+2} + \ldots + C_{n-r} C_n = C_{n-r} \] ### Final Answer: \[ C_0 C_r + C_1 C_{r+1} + C_2 C_{r+2} + \ldots + C_{n-r} C_n = C_{n} \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    ML KHANNA|Exercise Problem Set (4) (Assertion/Reason) |1 Videos
  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    ML KHANNA|Exercise Problem Set (4) (TRUE AND FALSE) |11 Videos
  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    ML KHANNA|Exercise Problem Set (3) (MULTIPLE CHOICE QUESTIONS) |12 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos

Similar Questions

Explore conceptually related problems

If C_(r) = ""^(n)C_(r) and (C_(0) + C_(1)) (C_(1) + C_(2)) … (C_(n-1) + C_(n)) = k ((n +1)^(n))/(n!) , then the value of k, is

Let (1 + x)^(n) = sum_(r=0)^(n) C_(r) x^(r) and , (C_(1))/(C_(0)) + 2 (C_(2))/(C_(1)) + (C_(3))/(C_(2)) +…+ n (C_(n))/(C_(n-1)) = (1)/(k) n(n+1) , then the value of k, is

Prove that ""^(n)C_(r )+2""^(n)C_(r-1)+ ""^(n)C_(r-2)= ""^(n+2)C_(r ) .

""^(n)C_(r+1)+^(n)C_(r-1)+2.""^(n)C_(r)=

If (1-x^(2))^(n)=sum_(r=0)^(n)a_(r)x^(r)(1-x)^(2n-r), then a_(r) is equal to ^(n)C_(r) b.^(n)C_(r)3^(r) c.^(2n)C_(r) d.^(n)C_(r)2^(r)

ML KHANNA-BINOMIAL THEOREM AND MATHEMATICAL INDUCTION -Problem Set (4) (MULTIPLE CHOICE QUESTIONS)
  1. If C(r ) stands for ""^(n)C(r ), then the sum of first (n+1) terms of...

    Text Solution

    |

  2. The value of the sum of the series 3.""^(n)C(0)-8" "^(n)C(1)+13" "^(n...

    Text Solution

    |

  3. If (1+x)^(n) = C(0)+C(1)x + C(2) x^(2) +...+C(n)x^(n) then C(0)""^...

    Text Solution

    |

  4. If n is a positive integer and C(k)=""^(n)C(k), then the value of sum(...

    Text Solution

    |

  5. The vaule of sum(r=0)^(n-1) (""^(C(r))/(""^(n)C(r) + ""^(n)C(r +1)) ...

    Text Solution

    |

  6. sum(r=0)^(n) (-1)^(r )" "^(n)C(r ) (1+r x)/(1+n x) equals

    Text Solution

    |

  7. If n gt 3, then abC(0)-(a-1) (b-1) C(1) + (a-2)(b-2) C(2)-(a-3) (b-3) ...

    Text Solution

    |

  8. If C(r) be the coefficients of x^(r) in (1 + x)^(n) , then the value ...

    Text Solution

    |

  9. If n is an odd natural number, then sum(r=0)^(n) ((-1)^(r ))/(""^(n)C(...

    Text Solution

    |

  10. If a(n) = sum(r=0)^(n) (1)/(""^(n)C(r)) , find the value of sum(...

    Text Solution

    |

  11. With usual notations C(0)C(1)+C(1)C(2)+…+C(n-1)C(n)=

    Text Solution

    |

  12. With usual notations C(0)C(2)+C(1)C(3)+C(2)C(4)+…+C(n-2)C(n)=

    Text Solution

    |

  13. With usual notations, C(0)C(r )+C(1)C(r+1) +C(2)C(r+2) +…+C(n-r)C(n)...

    Text Solution

    |

  14. The coefficient of x^(n) y^(n) in the expansion of [(1 + x)(1+y) (x...

    Text Solution

    |

  15. The coefficient of x^r[0lt=rlt=(n-1)] in lthe expansion of (x+3)^(n-1)...

    Text Solution

    |

  16. If m,n,r are positive integers such that r lt m,n, then ""^(m)C(r)...

    Text Solution

    |

  17. The sum sum(i=0)^(m)""^(10)C(i)xx""^(20)C(m-i)("where " ""^(p)C(q)=0" ...

    Text Solution

    |

  18. The value of of sum of the series ""^(14)C(0).""^(15)C(1)+""^(14)C(1)...

    Text Solution

    |

  19. The value of (30 0)(30 10)-(30 1)(30 11)+(30 2)(30 12)++(30 20)(30 30)...

    Text Solution

    |

  20. If C(r )=(""^(101)C(r )) then E=sum(r=0)^(100) (-1)^(r ) C(r ) C(r+1)

    Text Solution

    |