Home
Class 12
MATHS
Show C(0)-2^(2)C(1)+3^(2)C(2)+…+ (-1)^(n...

Show `C_(0)-2^(2)C_(1)+3^(2)C_(2)+…+ (-1)^(n)(n+1)^(2)C_(n)=0`, where `n gt 2`

Text Solution

Verified by Experts

The correct Answer is:
T
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |3 Videos
  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    ML KHANNA|Exercise Self Assessment Test |35 Videos
  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    ML KHANNA|Exercise Problem Set (4) (Assertion/Reason) |1 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos

Similar Questions

Explore conceptually related problems

Prove that C_(0)2^(2)C_(1)+3C_(2)4^(2)C_(3)+...+(-1)^(n)(n+1)^(2)C_(n)=0 where C_(r)=nC_(r)

Prove that C_(0)-2^(2)C_(1)+3^(2)C_(2)-4^(2)C_(3)+...+(-1)^(n)(n+1)^(2)xx C_(n)=0 where C_(r)=^(n)C_(r)

If C_(r) stands for ""^(n)C_(r) , then the sum of the series (2((n)/(2))!((n)/(2))!)/(n!)[C_(0)^(2)-2C_(1)^(2)+3C_(2)^(2)-...+(-1)^(n)(n+1)C_(n)^(2)] , where n is an even positive integers, is:

If C_(r) stands for nC_(r), then the sum of the series (2((n)/(2))!((n)/(2))!)/(n!)[C_(0)^(2)-2C_(1)^(2)+3C_(2)^(2)-......+(-1)^(n)(n+1)C_(n)^(2)], where n is an even positive integer,is

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0)^(2) - C_(1)^(2) + C_(2)^(2) -…+ (-1)^(n) *C_(n)^(2)= 0 or (-1)^(n//2) * (n!)/((n//2)! (n//2)!) , according as n is odd or even Also , evaluate C_(0)^(2) + C_(1)^(2) + C_(2)^(2) - ...+ (-1)^(n) *C_(n)^(2) for n = 10 and n= 11 .

Show that C_(0)^(2)-C_(1)^(2)+C_(2)^(2)-C_(3)^(2)+.........+(-1)^(n)C_(n)^(2)=0 or (-1)^((n)/(2))C_((n)/(2)) according as n is odd or even.

If C_(0), C_(1), C_(2),..., C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then . 1^(2). C_(1) - 2^(2) . C_(2)+ 3^(2). C_(3) -4^(2)C_(4) + ...+ (-1).""^(n-2)n^(2)C_(n)= .

C_(0)^(2)+1/2C_(1)^(2)+1/3C_(2)^(2)+….+1/(n+1)C_(n)^(2) equals