Home
Class 12
MATHS
If C(r )=""^(n)C(r ), then C(1)+3C(3)+5...

If `C_(r )=""^(n)C_(r )`, then `C_(1)+3C_(3)+5C_(5)+…=2C_(2) +4C_(4)+6C_(6)+…`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( C_1 + 3C_3 + 5C_5 + \ldots = 2C_2 + 4C_4 + 6C_6 + \ldots \), we will use the properties of binomial coefficients and some algebraic manipulations. ### Step-by-Step Solution: 1. **Understand the Binomial Expansion**: The binomial expansion of \( (1 + x)^n \) is given by: \[ (1 + x)^n = C(n, 0) + C(n, 1)x + C(n, 2)x^2 + C(n, 3)x^3 + \ldots + C(n, n)x^n \] 2. **Differentiate the Binomial Expansion**: Differentiate both sides with respect to \( x \): \[ \frac{d}{dx}[(1 + x)^n] = n(1 + x)^{n-1} \] The right-hand side becomes: \[ C(n, 1) + 2C(n, 2)x + 3C(n, 3)x^2 + \ldots + nC(n, n)x^{n-1} \] 3. **Evaluate at \( x = 1 \)**: Substituting \( x = 1 \) into the differentiated equation gives: \[ n(2^{n-1}) = C(n, 1) + 2C(n, 2) + 3C(n, 3) + \ldots + nC(n, n) \] 4. **Evaluate at \( x = -1 \)**: Now, substitute \( x = -1 \): \[ n(0) = C(n, 1) - 2C(n, 2) + 3C(n, 3) - 4C(n, 4) + \ldots + (-1)^n C(n, n) \] This simplifies to: \[ 0 = C(n, 1) - 2C(n, 2) + 3C(n, 3) - 4C(n, 4) + \ldots \] 5. **Combine the Results**: Adding the results from steps 3 and 4, we can separate the terms: - The sum of the coefficients with odd indices (1, 3, 5, ...) on the left side. - The sum of the coefficients with even indices (2, 4, 6, ...) on the right side. 6. **Conclude the Equality**: From the combined results, we can see that: \[ C_1 + 3C_3 + 5C_5 + \ldots = 2C_2 + 4C_4 + 6C_6 + \ldots \] This shows that the original statement is true. ### Final Statement: Thus, the statement \( C_1 + 3C_3 + 5C_5 + \ldots = 2C_2 + 4C_4 + 6C_6 + \ldots \) is true. ---
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |3 Videos
  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    ML KHANNA|Exercise Self Assessment Test |35 Videos
  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    ML KHANNA|Exercise Problem Set (4) (Assertion/Reason) |1 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos

Similar Questions

Explore conceptually related problems

lf C_(r)=""^(n)C_(r) , then C_(0)-1/3C_(1)+1/5C_(2) …… upto (n+1) terms equal

Let (1 + x)^(n) = sum_(r=0)^(n) C_(r) x^(r) and , (C_(1))/(C_(0)) + 2 (C_(2))/(C_(1)) + (C_(3))/(C_(2)) +…+ n (C_(n))/(C_(n-1)) = (1)/(k) n(n+1) , then the value of k, is

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3)x^(3) + ...+ C_(n)x^(n) , prove that (C_(1))/(2) + (C_(3))/(4) + (C_(5))/(6) + …= (2^(n+1)-1)/(n+1) .

If ^(n+1)C_3=2.^nC_2, then n= (A) 3 (B) 4 (C) 5 (D) 6

Find the sum C_(0)-C_(2)+C_(4)-C_(6)+........ Where C_(r)=nC_(r)

C_(0)C_(2)+C_(1)C_(3)+C_(2)C_(4)+c_(3)C_(5)+...+C_(n-2)C_(n)