Home
Class 12
MATHS
Find the rank of the martrix A=[(1,-2,1,...

Find the rank of the martrix `A=[(1,-2,1,-1),(1,1,-2,3),(4,1,-5,8),(5,-7,2,-1)]` by reducing into the Echelon form.

Text Solution

AI Generated Solution

The correct Answer is:
To find the rank of the matrix \( A = \begin{pmatrix} 1 & -2 & 1 & -1 \\ 1 & 1 & -2 & 3 \\ 4 & 1 & -5 & 8 \\ 5 & -7 & 2 & -1 \end{pmatrix} \), we will reduce it to its Echelon form through a series of row operations. ### Step 1: Write the matrix We start with the matrix: \[ A = \begin{pmatrix} 1 & -2 & 1 & -1 \\ 1 & 1 & -2 & 3 \\ 4 & 1 & -5 & 8 \\ 5 & -7 & 2 & -1 \end{pmatrix} \] ### Step 2: Row operations to create zeros below the first pivot We will use the first row to eliminate the entries below the first pivot (which is 1 in the first row, first column). - For \( R_2 \): \( R_2 \leftarrow R_2 - R_1 \) - For \( R_3 \): \( R_3 \leftarrow R_3 - 4R_1 \) - For \( R_4 \): \( R_4 \leftarrow R_4 - 5R_1 \) Calculating these: 1. \( R_2 = (1 - 1, 1 - (-2), -2 - 1, 3 - (-1)) = (0, 3, -3, 4) \) 2. \( R_3 = (4 - 4, 1 - (-8), -5 - 4, 8 - (-4)) = (0, 9, -9, 12) \) 3. \( R_4 = (5 - 5, -7 - 10, 2 - 5, -1 - (-5)) = (0, 3, -3, 4) \) Now, the matrix looks like: \[ \begin{pmatrix} 1 & -2 & 1 & -1 \\ 0 & 3 & -3 & 4 \\ 0 & 9 & -9 & 12 \\ 0 & 3 & -3 & 4 \end{pmatrix} \] ### Step 3: Further simplify the matrix Next, we can simplify \( R_3 \) and \( R_4 \) by using \( R_2 \): - For \( R_3 \): \( R_3 \leftarrow R_3 - 3R_2 \) - For \( R_4 \): \( R_4 \leftarrow R_4 - R_2 \) Calculating these: 1. \( R_3 = (0, 9 - 9, -9 + 9, 12 - 12) = (0, 0, 0, 0) \) 2. \( R_4 = (0, 3 - 3, -3 + 3, 4 - 4) = (0, 0, 0, 0) \) Now, the matrix is: \[ \begin{pmatrix} 1 & -2 & 1 & -1 \\ 0 & 3 & -3 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \] ### Step 4: Determine the rank The rank of a matrix is the number of non-zero rows in its Echelon form. Here, we have: 1. \( R_1 \): Non-zero 2. \( R_2 \): Non-zero 3. \( R_3 \): Zero 4. \( R_4 \): Zero Thus, the rank of the matrix \( A \) is 2. ### Final Answer The rank of the matrix \( A \) is \( \boxed{2} \).
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (MULTIPLE CHOICE QUESTIONS)|114 Videos
  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (ASSERTION /REASON)|3 Videos
  • MATRICES

    ML KHANNA|Exercise COMPREHENSION|3 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise MISCELANEOUS EXERCISE (COMPREHENSION)|3 Videos

Similar Questions

Explore conceptually related problems

Find the rank of the matrix A=[[1,2,32,3,43,4,5]]

Find the rank of the matrix, A=[[1,2,3],[1,4,2],[2,6,5]]

Find the Rank of the matrix: [[1,1,1,-1],[1,2,3,4],[3,4,5,2]]

Find the rank of the matrix [[1,2,3,2],[2,3,5,1],[1,3,4,5]]

1) Find the rank of the matrix [[1,3,2],[2,5,4],[1,2,2]]

5.Find the rank of the matrix [[2,2,-1],[4,1,2],[3,-1,0],[1,-2,-1]]

Find the rank of the matrix [[1,2,3,0],[2,4,3,2],[3,2,1,3],[6,8,7,5]]

1.Find the rank of the matrix [[1,-2,3,4],[-2,4,-1,-3],[-1,2,7,6]]

(b) Find the rank of the matrix [[1,-1,2,-1],[4,2,-1,2],[3,2,-2,0]]