Home
Class 12
MATHS
If A=[(-4,-3,-3),(1,0,1),(4,4,3)] then a...

If `A=[(-4,-3,-3),(1,0,1),(4,4,3)]` then adj A=A.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that the adjoint of matrix \( A \) is equal to \( A \) itself, where \[ A = \begin{pmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{pmatrix} \] ### Step 1: Calculate the Cofactor Matrix The cofactor \( C_{ij} \) of an element \( a_{ij} \) in matrix \( A \) is given by: \[ C_{ij} = (-1)^{i+j} \cdot M_{ij} \] where \( M_{ij} \) is the determinant of the submatrix formed by deleting the \( i \)-th row and \( j \)-th column. #### Finding Cofactors: 1. **Cofactor \( C_{11} \)**: \[ M_{11} = \begin{vmatrix} 0 & 1 \\ 4 & 3 \end{vmatrix} = (0 \cdot 3) - (1 \cdot 4) = -4 \] \[ C_{11} = (-1)^{1+1} \cdot (-4) = -4 \] 2. **Cofactor \( C_{12} \)**: \[ M_{12} = \begin{vmatrix} 1 & 1 \\ 4 & 3 \end{vmatrix} = (1 \cdot 3) - (1 \cdot 4) = -1 \] \[ C_{12} = (-1)^{1+2} \cdot (-1) = 1 \] 3. **Cofactor \( C_{13} \)**: \[ M_{13} = \begin{vmatrix} 1 & 0 \\ 4 & 4 \end{vmatrix} = (1 \cdot 4) - (0 \cdot 4) = 4 \] \[ C_{13} = (-1)^{1+3} \cdot 4 = 4 \] 4. **Cofactor \( C_{21} \)**: \[ M_{21} = \begin{vmatrix} -3 & -3 \\ 4 & 3 \end{vmatrix} = (-3 \cdot 3) - (-3 \cdot 4) = -9 + 12 = 3 \] \[ C_{21} = (-1)^{2+1} \cdot 3 = -3 \] 5. **Cofactor \( C_{22} \)**: \[ M_{22} = \begin{vmatrix} -4 & -3 \\ 4 & 3 \end{vmatrix} = (-4 \cdot 3) - (-3 \cdot 4) = -12 + 12 = 0 \] \[ C_{22} = (-1)^{2+2} \cdot 0 = 0 \] 6. **Cofactor \( C_{23} \)**: \[ M_{23} = \begin{vmatrix} -4 & -3 \\ 1 & 4 \end{vmatrix} = (-4 \cdot 4) - (-3 \cdot 1) = -16 + 3 = -13 \] \[ C_{23} = (-1)^{2+3} \cdot (-13) = 13 \] 7. **Cofactor \( C_{31} \)**: \[ M_{31} = \begin{vmatrix} -3 & -3 \\ 0 & 1 \end{vmatrix} = (-3 \cdot 1) - (-3 \cdot 0) = -3 \] \[ C_{31} = (-1)^{3+1} \cdot (-3) = -3 \] 8. **Cofactor \( C_{32} \)**: \[ M_{32} = \begin{vmatrix} -4 & -3 \\ 1 & 1 \end{vmatrix} = (-4 \cdot 1) - (-3 \cdot 1) = -4 + 3 = -1 \] \[ C_{32} = (-1)^{3+2} \cdot (-1) = 1 \] 9. **Cofactor \( C_{33} \)**: \[ M_{33} = \begin{vmatrix} -4 & -3 \\ 1 & 0 \end{vmatrix} = (-4 \cdot 0) - (-3 \cdot 1) = 3 \] \[ C_{33} = (-1)^{3+3} \cdot 3 = 3 \] ### Step 2: Form the Cofactor Matrix The cofactor matrix \( C \) is: \[ C = \begin{pmatrix} -4 & 1 & 4 \\ -3 & 0 & 13 \\ -3 & 1 & 3 \end{pmatrix} \] ### Step 3: Transpose the Cofactor Matrix to Get the Adjoint The adjoint \( \text{adj}(A) \) is the transpose of the cofactor matrix: \[ \text{adj}(A) = C^T = \begin{pmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 13 & 3 \end{pmatrix} \] ### Step 4: Compare \( \text{adj}(A) \) with \( A \) Now we need to check if \( \text{adj}(A) = A \): \[ A = \begin{pmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{pmatrix} \] Since the entries of \( \text{adj}(A) \) do not match with \( A \), we find that \( \text{adj}(A) \neq A \). ### Conclusion Thus, the statement \( \text{adj}(A) = A \) is not true based on our calculations. ---
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (FILL IN THE BLANKS)|19 Videos
  • MATRICES

    ML KHANNA|Exercise SELF ASSESSMENT TEST|13 Videos
  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (ASSERTION /REASON)|3 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise MISCELANEOUS EXERCISE (COMPREHENSION)|3 Videos

Similar Questions

Explore conceptually related problems

If A = [(-4,-3,-3),(1,0,1),(4,4,3)] , find adj (A)

Find the adjoint of the given matrix and verify in ach case that A.(adj A)=(adj A).A=|A\|.I. If A=[(-4,-3,-3),(1,0,1),(4,4,3)] ,show that adj A=A.

If B_(0)=[(-4, -3, -3),(1,0,1),(4,4,3)], B_(n)=adj(B_(n-1), AA n in N and I is an identity matrix of order 3, then B_(1)+B_(3)+B_(5)+B_(7)+B_(9) is equal to

If A[(2,0,3),(1,-1,2),(3,-2,0)] , then (adj A)A=

If A=[(3,4,3),(2,5,7),(1,2,3)] then |Adj(Adj A)|=

Let A=[{:(1,-2,-3),(0,1,0),(-4,1,0):}] Find adj A.

If A=[(3,-3,4),(2,-3,4),(0,-1,1)] , then :