Home
Class 12
MATHS
If 2X-Y=[(3,-3,0),(3,3,2)] and 2Y+X=[(4,...

If `2X-Y=[(3,-3,0),(3,3,2)]` and `2Y+X=[(4,1,5),(-1,4,-4)]`, then `X=`…………………..

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to find the matrix \( X \) given the equations: 1. \( 2X - Y = \begin{pmatrix} 3 & -3 & 0 \\ 3 & 3 & 2 \end{pmatrix} \) 2. \( 2Y + X = \begin{pmatrix} 4 & 1 & 5 \\ -1 & 4 & -4 \end{pmatrix} \) Let's denote the matrices as follows: - Let \( A = \begin{pmatrix} 3 & -3 & 0 \\ 3 & 3 & 2 \end{pmatrix} \) - Let \( B = \begin{pmatrix} 4 & 1 & 5 \\ -1 & 4 & -4 \end{pmatrix} \) ### Step 1: Rewrite the equations From the first equation, we can express \( Y \) in terms of \( X \): \[ Y = 2X - A \] From the second equation, we can express \( Y \) in terms of \( X \): \[ Y = \frac{1}{2}(B - X) \] ### Step 2: Set the equations for \( Y \) equal to each other Now we have two expressions for \( Y \): \[ 2X - A = \frac{1}{2}(B - X) \] ### Step 3: Clear the fraction To eliminate the fraction, multiply the entire equation by 2: \[ 2(2X - A) = B - X \] This simplifies to: \[ 4X - 2A = B - X \] ### Step 4: Rearrange the equation Now, rearranging gives: \[ 4X + X = B + 2A \] \[ 5X = B + 2A \] ### Step 5: Substitute the values of \( A \) and \( B \) Now substitute \( A \) and \( B \): \[ 5X = \begin{pmatrix} 4 & 1 & 5 \\ -1 & 4 & -4 \end{pmatrix} + 2 \begin{pmatrix} 3 & -3 & 0 \\ 3 & 3 & 2 \end{pmatrix} \] Calculating \( 2A \): \[ 2A = \begin{pmatrix} 6 & -6 & 0 \\ 6 & 6 & 4 \end{pmatrix} \] ### Step 6: Add the matrices Now add \( B \) and \( 2A \): \[ B + 2A = \begin{pmatrix} 4 & 1 & 5 \\ -1 & 4 & -4 \end{pmatrix} + \begin{pmatrix} 6 & -6 & 0 \\ 6 & 6 & 4 \end{pmatrix} \] \[ = \begin{pmatrix} 4 + 6 & 1 - 6 & 5 + 0 \\ -1 + 6 & 4 + 6 & -4 + 4 \end{pmatrix} \] \[ = \begin{pmatrix} 10 & -5 & 5 \\ 5 & 10 & 0 \end{pmatrix} \] ### Step 7: Solve for \( X \) Now substitute back to find \( X \): \[ 5X = \begin{pmatrix} 10 & -5 & 5 \\ 5 & 10 & 0 \end{pmatrix} \] To find \( X \), divide both sides by 5: \[ X = \frac{1}{5} \begin{pmatrix} 10 & -5 & 5 \\ 5 & 10 & 0 \end{pmatrix} \] \[ = \begin{pmatrix} 2 & -1 & 1 \\ 1 & 2 & 0 \end{pmatrix} \] ### Final Answer Thus, the matrix \( X \) is: \[ X = \begin{pmatrix} 2 & -1 & 1 \\ 1 & 2 & 0 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ML KHANNA|Exercise SELF ASSESSMENT TEST|13 Videos
  • MATRICES

    ML KHANNA|Exercise COMPREHENSION|3 Videos
  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (TRUE AND FALSE)|9 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise MISCELANEOUS EXERCISE (COMPREHENSION)|3 Videos

Similar Questions

Explore conceptually related problems

Solve the following equations for X and Y : 2X-Y=[(3,-3,0),(3,3,2)], 2Y+X=[(4,1,5),(-1,4,-4)]

Find X and Y ,if 2X + 3Y = [(2,3),(4,0)] and 3X+2Y=[(2,-2),(-1,5)]

2X+3Y=[[2,3],[4,0]] and 3X+2Y=[[2,-2],[-1,5]]

If A=|(2,2,-4),(-4,2,-4),(2,-1,5)| and B=|(1,-1,0),(2,3,4),(0,1,2)| then find BA and use ths to sovle the system of equations y+2z=7, x-y=3 and 2x+3y+4z=17 .

If x+y=[[1,4,3] , [-2,5,6] , [7,0,2]] and x-y=[[3,2,5] , [4,1,2] , [1,0,4]] then find x and y

Find matrices 'X' and 'Y' if : 2X+3Y=[(2,3),(4,0)] and 3X+2Y=[(2,-2),(-1,5)]

If 2X+3Y=[[2,3],[4,0]] and 3X+2Y=[[-2, 2],[1,-5]] find X and Y.

If {:[(x-2y,2x-y),(3,4)]:}={:[(3,4),(3,4)]:} then find x and y.

ML KHANNA-MATRICES-PROBLEM SET(1) (FILL IN THE BLANKS)
  1. Is it possible to define the matrix A + B when a. A has 3 rows and B...

    Text Solution

    |

  2. If 2X-Y=[(3,-3,0),(3,3,2)] and 2Y+X=[(4,1,5),(-1,4,-4)], then X=………………...

    Text Solution

    |

  3. If [(4),(1),(3)]A=[(-4,8,4),(-1,2,1),(-3,6,3)] then A=……….

    Text Solution

    |

  4. If A be any mxxn matrix and both AB and BA are defined then B should b...

    Text Solution

    |

  5. If A=[(1,0),(0,1)] then 7A^(3)+4A^(2)-11A=………………..

    Text Solution

    |

  6. If A=[(2,0,0),(0,2,0),(0,0,2)] then A^(2)=…………..

    Text Solution

    |

  7. If A=[(1,2,2),(2,1,2),(2,2,1)] then A^(2)-4A-5I=………….

    Text Solution

    |

  8. If A=[(1,0),(0,0)],B=[(0,1),(0 ,0)] then AB=………….

    Text Solution

    |

  9. If A=[(2,3,1),(3,1,5)],B=[(1,2,-1),(0,-1,3)] then 2A-3B=………….

    Text Solution

    |

  10. If A=[(9,1),(4,3)],B=[(1,5),(6,11)] and 3A+5B+2C=0 then C=………….

    Text Solution

    |

  11. If A=[(2,-2,-4),(-1,3,4),(1,-2,x)] is an idempotent matrix, then x=………...

    Text Solution

    |

  12. If A=[(2,1),(1,3)],B=[(3,2,0),(1,0,4)], then AB=…………..

    Text Solution

    |

  13. If A=[(1,3,0),(-1,2,1),(0,0,2)],B=[(2,3,4),(1,2,3),(-1,1,2)] then AB=…...

    Text Solution

    |

  14. If A=[(2,3,4),(1,2,3),(-1,1,2)],B=[(1,3,0),(-1,2,1),(0,0,2)], then AB+...

    Text Solution

    |

  15. If A=[(0,1,1),(1,2,0),(4,-1,3)] then Adj. A=……….

    Text Solution

    |

  16. The inverset of A=[(-4,-3,-3),(1,0,1),(4,4,3)] is ………

    Text Solution

    |

  17. If A=[(cos theta, - sin theta, 0),(sin theta, cos theta, 0),(0,0,1)] t...

    Text Solution

    |

  18. If A=[(1,2,3),(0,1,2),(0,0,1)] then A^(-1)=………..

    Text Solution

    |

  19. The inverse of [(3,5,7),(2,-3,1),(1,1,2)] is ……………

    Text Solution

    |