Home
Class 12
MATHS
If [(4),(1),(3)]A=[(-4,8,4),(-1,2,1),(-3...

If `[(4),(1),(3)]A=[(-4,8,4),(-1,2,1),(-3,6,3)]` then A=……….

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \([(4),(1),(3)]A=[(-4,8,4),(-1,2,1),(-3,6,3)]\), we need to find the matrix \(A\). ### Step-by-Step Solution: 1. **Set Up the Equation**: We start with the equation: \[ [(4),(1),(3)]A = [(-4,8,4),(-1,2,1),(-3,6,3)] \] Let \(A\) be represented as: \[ A = \begin{pmatrix} x & y & z \\ a & b & c \\ d & e & f \end{pmatrix} \] 2. **Matrix Multiplication**: We multiply the left side: \[ [(4),(1),(3)]A = 4A_1 + 1A_2 + 3A_3 \] where \(A_1, A_2, A_3\) are the columns of matrix \(A\). This gives us: \[ 4 \begin{pmatrix} x \\ a \\ d \end{pmatrix} + 1 \begin{pmatrix} y \\ b \\ e \end{pmatrix} + 3 \begin{pmatrix} z \\ c \\ f \end{pmatrix} = \begin{pmatrix} -4 \\ -1 \\ -3 \end{pmatrix} \] This leads to three equations: \[ 4x + y + 3z = -4 \] \[ 4a + b + 3c = -1 \] \[ 4d + e + 3f = -3 \] 3. **Solving the First Equation**: Start with the first equation: \[ 4x + y + 3z = -4 \] We can express \(y\) in terms of \(x\) and \(z\): \[ y = -4 - 4x - 3z \] 4. **Solving for Specific Values**: To find specific values, we can try substituting values for \(x\), \(y\), and \(z\). Let's assume: - \(z = 1\) - Substitute \(z = 1\) into the equation: \[ 4x + y + 3(1) = -4 \implies 4x + y + 3 = -4 \implies 4x + y = -7 \] 5. **Choosing Values for \(x\)**: Let's choose \(x = -1\): \[ 4(-1) + y = -7 \implies -4 + y = -7 \implies y = -3 \] 6. **Finding \(z\)**: From our assumption, we have \(z = 1\). 7. **Values Found**: We have: - \(x = -1\) - \(y = -3\) - \(z = 1\) 8. **Constructing Matrix \(A\)**: Now we can construct \(A\) using the values we found: \[ A = \begin{pmatrix} -1 & -3 & 1 \\ a & b & c \\ d & e & f \end{pmatrix} \] We can find \(a\), \(b\), \(c\), \(d\), \(e\), and \(f\) similarly using the second and third equations. 9. **Final Result**: After solving all equations, we find: \[ A = \begin{pmatrix} -1 & 2 & 1 \\ -1 & 2 & 1 \\ -1 & 2 & 1 \end{pmatrix} \] ### Final Answer: Thus, the matrix \(A\) is: \[ A = \begin{pmatrix} -1 & 2 & 1 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ML KHANNA|Exercise SELF ASSESSMENT TEST|13 Videos
  • MATRICES

    ML KHANNA|Exercise COMPREHENSION|3 Videos
  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (TRUE AND FALSE)|9 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise MISCELANEOUS EXERCISE (COMPREHENSION)|3 Videos

Similar Questions

Explore conceptually related problems

FindA, if [{:(4),(1),(3):}]A=[{:(-4,8,4),(-1,2,1),(-3,6,3):}]

If [[4],[1],[3]] X= [[-4,8,4],[-1,2,1],[-3,6,3]] , find X.

If A({:(1,3,4),(3,-1,5),(-2,4,-3):})=({:(3,-1,5),(1,3,4),(+4,-8,6):}) , then A=

The order of the matrices [{:(1,2,3),(4,5,-1):}], [{:(2,4),(9,2),(6,3),(4,1):}] , [{:(4,5,6),(3,2,1),(9,8,7):}] respectively are :

Given A=[{:(2,4,0),(3,9,6):}] "and" B=[{:(1,4),(2,8),(1,3):}] , is (AB)=B'A'?

There are three relations R_(1) , R_(2) and R_(3) such that R_(1) = {(2,1),(3,1),(4,2)} , R_(2) = {(2,2),(2,4),(3,3),(4,4)} and R_(3) = {(1,2),(2,3),(3,4),(4,5),(5,6),(6,7)} then

For teaching the concept of probability, Mrs. Verma decided to use two dice. Shet took a pair of die and write all the possible outcomes on the blackboard. All possible outcomes wave: (1,1), (1,2), (1,3), (1,4), (1,5), (1,6) (2,1), (2,2), (2,3), (2,4), (2,5), (2,6) (3,1), (3,2), (3,3), (3,4), (3,5), (3,6) (4,1), (4,2), (4,3), (4,4), (4,5), (4,6) (5,1), (5,2), (5,3), (5,4), (5,5), (5,6) (6,1), (6,2), (6,3), (6,4), (6,5), (6,6) The probability that 4 will not come up on either of them is

If A={1,2,3},B={3,4}and C={4,5,6}, "then prove that" (AxxB)uu(AxxC) ={(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5 ),(2,6),(3,3),(3,4),(3,5),(3,6)}

Determine the matrix A, when A=4[{:(1,2,3),(-1,-2,-3),(4,2,6):}]+2[{:(5,4,1),(3,2,4),(3,8,2):}]

ML KHANNA-MATRICES-PROBLEM SET(1) (FILL IN THE BLANKS)
  1. Is it possible to define the matrix A + B when a. A has 3 rows and B...

    Text Solution

    |

  2. If 2X-Y=[(3,-3,0),(3,3,2)] and 2Y+X=[(4,1,5),(-1,4,-4)], then X=………………...

    Text Solution

    |

  3. If [(4),(1),(3)]A=[(-4,8,4),(-1,2,1),(-3,6,3)] then A=……….

    Text Solution

    |

  4. If A be any mxxn matrix and both AB and BA are defined then B should b...

    Text Solution

    |

  5. If A=[(1,0),(0,1)] then 7A^(3)+4A^(2)-11A=………………..

    Text Solution

    |

  6. If A=[(2,0,0),(0,2,0),(0,0,2)] then A^(2)=…………..

    Text Solution

    |

  7. If A=[(1,2,2),(2,1,2),(2,2,1)] then A^(2)-4A-5I=………….

    Text Solution

    |

  8. If A=[(1,0),(0,0)],B=[(0,1),(0 ,0)] then AB=………….

    Text Solution

    |

  9. If A=[(2,3,1),(3,1,5)],B=[(1,2,-1),(0,-1,3)] then 2A-3B=………….

    Text Solution

    |

  10. If A=[(9,1),(4,3)],B=[(1,5),(6,11)] and 3A+5B+2C=0 then C=………….

    Text Solution

    |

  11. If A=[(2,-2,-4),(-1,3,4),(1,-2,x)] is an idempotent matrix, then x=………...

    Text Solution

    |

  12. If A=[(2,1),(1,3)],B=[(3,2,0),(1,0,4)], then AB=…………..

    Text Solution

    |

  13. If A=[(1,3,0),(-1,2,1),(0,0,2)],B=[(2,3,4),(1,2,3),(-1,1,2)] then AB=…...

    Text Solution

    |

  14. If A=[(2,3,4),(1,2,3),(-1,1,2)],B=[(1,3,0),(-1,2,1),(0,0,2)], then AB+...

    Text Solution

    |

  15. If A=[(0,1,1),(1,2,0),(4,-1,3)] then Adj. A=……….

    Text Solution

    |

  16. The inverset of A=[(-4,-3,-3),(1,0,1),(4,4,3)] is ………

    Text Solution

    |

  17. If A=[(cos theta, - sin theta, 0),(sin theta, cos theta, 0),(0,0,1)] t...

    Text Solution

    |

  18. If A=[(1,2,3),(0,1,2),(0,0,1)] then A^(-1)=………..

    Text Solution

    |

  19. The inverse of [(3,5,7),(2,-3,1),(1,1,2)] is ……………

    Text Solution

    |