Home
Class 12
MATHS
If A=[(1,2,2),(2,1,2),(2,2,1)] then A^(2...

If `A=[(1,2,2),(2,1,2),(2,2,1)]` then `A^(2)-4A-5I=`………….

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( A^2 - 4A - 5I \) where \( A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply matrix \( A \) by itself: \[ A^2 = A \times A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix} \] Calculating the elements of \( A^2 \): - First row, first column: \[ 1 \cdot 1 + 2 \cdot 2 + 2 \cdot 2 = 1 + 4 + 4 = 9 \] - First row, second column: \[ 1 \cdot 2 + 2 \cdot 1 + 2 \cdot 2 = 2 + 2 + 4 = 8 \] - First row, third column: \[ 1 \cdot 2 + 2 \cdot 2 + 2 \cdot 1 = 2 + 4 + 2 = 8 \] - Second row, first column: \[ 2 \cdot 1 + 1 \cdot 2 + 2 \cdot 2 = 2 + 2 + 4 = 8 \] - Second row, second column: \[ 2 \cdot 2 + 1 \cdot 1 + 2 \cdot 2 = 4 + 1 + 4 = 9 \] - Second row, third column: \[ 2 \cdot 2 + 1 \cdot 2 + 2 \cdot 1 = 4 + 2 + 2 = 8 \] - Third row, first column: \[ 2 \cdot 1 + 2 \cdot 2 + 1 \cdot 2 = 2 + 4 + 2 = 8 \] - Third row, second column: \[ 2 \cdot 2 + 2 \cdot 1 + 1 \cdot 2 = 4 + 2 + 2 = 8 \] - Third row, third column: \[ 2 \cdot 2 + 2 \cdot 2 + 1 \cdot 1 = 4 + 4 + 1 = 9 \] Thus, we have: \[ A^2 = \begin{pmatrix} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{pmatrix} \] ### Step 2: Calculate \( 4A \) Next, we calculate \( 4A \): \[ 4A = 4 \times \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 4 & 8 & 8 \\ 8 & 4 & 8 \\ 8 & 8 & 4 \end{pmatrix} \] ### Step 3: Calculate \( 5I \) Now, we calculate \( 5I \) where \( I \) is the identity matrix of the same order as \( A \): \[ I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] \[ 5I = 5 \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{pmatrix} \] ### Step 4: Combine the results to find \( A^2 - 4A - 5I \) Now we combine the results: \[ A^2 - 4A - 5I = \begin{pmatrix} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{pmatrix} - \begin{pmatrix} 4 & 8 & 8 \\ 8 & 4 & 8 \\ 8 & 8 & 4 \end{pmatrix} - \begin{pmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{pmatrix} \] Calculating each element: - First row: \[ 9 - 4 - 5 = 0, \quad 8 - 8 - 0 = 0, \quad 8 - 8 - 0 = 0 \] - Second row: \[ 8 - 8 - 0 = 0, \quad 9 - 4 - 5 = 0, \quad 8 - 8 - 0 = 0 \] - Third row: \[ 8 - 8 - 0 = 0, \quad 8 - 8 - 0 = 0, \quad 9 - 4 - 5 = 0 \] Thus, we have: \[ A^2 - 4A - 5I = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \] ### Final Answer: \[ A^2 - 4A - 5I = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ML KHANNA|Exercise SELF ASSESSMENT TEST|13 Videos
  • MATRICES

    ML KHANNA|Exercise COMPREHENSION|3 Videos
  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (TRUE AND FALSE)|9 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise MISCELANEOUS EXERCISE (COMPREHENSION)|3 Videos

Similar Questions

Explore conceptually related problems

If A=[(1,2,2),(2,1,2),(2,2,1)] then A^(2)-4A is equal to

If A=[[1,2,2], [2,1,2],[2,2,1]] then A^(2)-5I=

If A=[{:(1,2,2),(2,1,2),(2,2,1):}] , prove that A^(2)-4A-5I=O and hence, obtain A^(-1) .

If A=[(1,2,2),(2,1,2),(2,2,1)] then (A) A^-1= 1/5(A-4I_3) (B) A^2-4A-5I_3=0 (C) A^2 is invertible (D) A^3 is non invertible

If A=|(1,2,2),(2,1,2),(2,2,1)|, verifty that A^2-4A-5I-5I=0

If A=[[1,2,22,1,22,2,1]], then prove that A^(2)-4A-5I,=O

If A = ({:( 1,2,3),( 2,1,2),( 2,2,1) :}) and A^(2) -4A -5l =O where I and O are the unit matrix and the null matrix order 3 respectively if , 15A^(-1) =lambda |{:( -3,2,3),(2,-3,2),(2,2,-3):}| then the find the value of lambda

If A=|{:(1,2,2),(2,1,2),(2,2,1):}| , then show that A^(2)-4A-5I_(3)=0 . Hemce find A^(-1) .

If A = [(2,2,1), (1,3,1), (1,2,2)] then A^-1+(A-5I) (AI)^2 = (i) 1/ 5 [[4,2, -1], [-1,3,1], [-1,2,4]] (ii) 1/5 [[4, -2, -1], [-1, 3, -1], [-1, -2,4]] (iii) 1/3 [[4,2, -1], [-1,3,1], [-1,2,4]] (iv) 1/3 [[4, -2, -1], [-1,3, -1], [-1, -2,4]]

if A=[[1,2,22,1,22,2,1]] then find the value of A^(2)-4A+5I_(3) then find the value of

ML KHANNA-MATRICES-PROBLEM SET(1) (FILL IN THE BLANKS)
  1. Is it possible to define the matrix A + B when a. A has 3 rows and B...

    Text Solution

    |

  2. If 2X-Y=[(3,-3,0),(3,3,2)] and 2Y+X=[(4,1,5),(-1,4,-4)], then X=………………...

    Text Solution

    |

  3. If [(4),(1),(3)]A=[(-4,8,4),(-1,2,1),(-3,6,3)] then A=……….

    Text Solution

    |

  4. If A be any mxxn matrix and both AB and BA are defined then B should b...

    Text Solution

    |

  5. If A=[(1,0),(0,1)] then 7A^(3)+4A^(2)-11A=………………..

    Text Solution

    |

  6. If A=[(2,0,0),(0,2,0),(0,0,2)] then A^(2)=…………..

    Text Solution

    |

  7. If A=[(1,2,2),(2,1,2),(2,2,1)] then A^(2)-4A-5I=………….

    Text Solution

    |

  8. If A=[(1,0),(0,0)],B=[(0,1),(0 ,0)] then AB=………….

    Text Solution

    |

  9. If A=[(2,3,1),(3,1,5)],B=[(1,2,-1),(0,-1,3)] then 2A-3B=………….

    Text Solution

    |

  10. If A=[(9,1),(4,3)],B=[(1,5),(6,11)] and 3A+5B+2C=0 then C=………….

    Text Solution

    |

  11. If A=[(2,-2,-4),(-1,3,4),(1,-2,x)] is an idempotent matrix, then x=………...

    Text Solution

    |

  12. If A=[(2,1),(1,3)],B=[(3,2,0),(1,0,4)], then AB=…………..

    Text Solution

    |

  13. If A=[(1,3,0),(-1,2,1),(0,0,2)],B=[(2,3,4),(1,2,3),(-1,1,2)] then AB=…...

    Text Solution

    |

  14. If A=[(2,3,4),(1,2,3),(-1,1,2)],B=[(1,3,0),(-1,2,1),(0,0,2)], then AB+...

    Text Solution

    |

  15. If A=[(0,1,1),(1,2,0),(4,-1,3)] then Adj. A=……….

    Text Solution

    |

  16. The inverset of A=[(-4,-3,-3),(1,0,1),(4,4,3)] is ………

    Text Solution

    |

  17. If A=[(cos theta, - sin theta, 0),(sin theta, cos theta, 0),(0,0,1)] t...

    Text Solution

    |

  18. If A=[(1,2,3),(0,1,2),(0,0,1)] then A^(-1)=………..

    Text Solution

    |

  19. The inverse of [(3,5,7),(2,-3,1),(1,1,2)] is ……………

    Text Solution

    |