Home
Class 12
MATHS
If A=[(2,-2,-4),(-1,3,4),(1,-2,x)] is an...

If `A=[(2,-2,-4),(-1,3,4),(1,-2,x)]` is an idempotent matrix, then x=………….

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( x \) in the idempotent matrix \( A = \begin{pmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & x \end{pmatrix} \), we need to use the property of idempotent matrices, which states that \( A^2 = A \). ### Step 1: Calculate \( A^2 \) First, we calculate \( A^2 \) by multiplying matrix \( A \) by itself. \[ A^2 = A \cdot A = \begin{pmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & x \end{pmatrix} \cdot \begin{pmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & x \end{pmatrix} \] ### Step 2: Perform the Matrix Multiplication Now, we will multiply the two matrices. The element in the \( i^{th} \) row and \( j^{th} \) column of the resulting matrix is obtained by taking the dot product of the \( i^{th} \) row of the first matrix and the \( j^{th} \) column of the second matrix. 1. **First Row:** - First element: \( 2 \cdot 2 + (-2) \cdot (-1) + (-4) \cdot 1 = 4 + 2 - 4 = 2 \) - Second element: \( 2 \cdot (-2) + (-2) \cdot 3 + (-4) \cdot (-2) = -4 - 6 + 8 = -2 \) - Third element: \( 2 \cdot (-4) + (-2) \cdot 4 + (-4) \cdot x = -8 - 8 - 4x = -16 - 4x \) 2. **Second Row:** - First element: \( -1 \cdot 2 + 3 \cdot (-1) + 4 \cdot 1 = -2 - 3 + 4 = -1 \) - Second element: \( -1 \cdot (-2) + 3 \cdot 3 + 4 \cdot (-2) = 2 + 9 - 8 = 3 \) - Third element: \( -1 \cdot (-4) + 3 \cdot 4 + 4 \cdot x = 4 + 12 + 4x = 16 + 4x \) 3. **Third Row:** - First element: \( 1 \cdot 2 + (-2) \cdot (-1) + x \cdot 1 = 2 + 2 + x = 4 + x \) - Second element: \( 1 \cdot (-2) + (-2) \cdot 3 + x \cdot (-2) = -2 - 6 - 2x = -8 - 2x \) - Third element: \( 1 \cdot (-4) + (-2) \cdot 4 + x \cdot x = -4 - 8 + x^2 = x^2 - 12 \) Combining these results, we have: \[ A^2 = \begin{pmatrix} 2 & -2 & -16 - 4x \\ -1 & 3 & 16 + 4x \\ 4 + x & -8 - 2x & x^2 - 12 \end{pmatrix} \] ### Step 3: Set \( A^2 = A \) Now, we set \( A^2 \) equal to \( A \): \[ \begin{pmatrix} 2 & -2 & -16 - 4x \\ -1 & 3 & 16 + 4x \\ 4 + x & -8 - 2x & x^2 - 12 \end{pmatrix} = \begin{pmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & x \end{pmatrix} \] ### Step 4: Solve the Equations From the equality of matrices, we can derive the following equations: 1. From the first row, third column: \[ -16 - 4x = -4 \implies -4x = 12 \implies x = -3 \] 2. From the second row, third column: \[ 16 + 4x = 4 \implies 4x = -12 \implies x = -3 \] 3. From the third row, first column: \[ 4 + x = 1 \implies x = -3 \] 4. From the third row, second column: \[ -8 - 2x = -2 \implies -2x = 6 \implies x = -3 \] 5. From the third row, third column: \[ x^2 - 12 = x \implies x^2 - x - 12 = 0 \] Factoring gives: \[ (x - 4)(x + 3) = 0 \implies x = 4 \text{ or } x = -3 \] ### Conclusion Since all equations consistently lead us to \( x = -3 \), we conclude: \[ \boxed{-3} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ML KHANNA|Exercise SELF ASSESSMENT TEST|13 Videos
  • MATRICES

    ML KHANNA|Exercise COMPREHENSION|3 Videos
  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (TRUE AND FALSE)|9 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise MISCELANEOUS EXERCISE (COMPREHENSION)|3 Videos

Similar Questions

Explore conceptually related problems

If A=[[2,-2,-4],[-1,3,4],[1,-2,-3]] then A is 1) an idempotent matrix 2) nilpotent matrix 3) involutary 4) orthogonal matrix

If A=[[2,-2,-4],[-1,3,4],[1,-2,-3]] then A is 1) an idempotent matrix 2) nilpotent matrix 3) involutary 4) orthogonal matrix

show that the matrix A=[(2,-2,-4),(-1,3,4),(1,-2,-3)] is idempotent.

The matrix A=[(-5,-8,0),(3,5,0),(1,2,-1)] is (A) idempotent matrix (B) involutory matrix (C) nilpotent matrix (D) none of these

If A=[{:(4,x+2),(2x-3,x+1):}] is a symmetric matrix, then x=?

If A=[(1,x,3),(1,3,3),(2,4,4)] is the adjoint of a 3xx3 matrix B and det. (B)=4 , then the value of x is ______ .

Let A=[(2, -1, 1),(-2, 3, -1),(-4, 4, -x)] be a matrix. If A^(2)=A , then the value of x is equal to

The matrix A = [{:(2 , -2, -4),(- 1, 3, 4),(1 , - 2, -3):}] is

Express the matrix A={:[(2,-3,4),(-1,4,3),(1,-2,3)]:} as the sum of a symmetric and a skew symmetric matrix

ML KHANNA-MATRICES-PROBLEM SET(1) (FILL IN THE BLANKS)
  1. Is it possible to define the matrix A + B when a. A has 3 rows and B...

    Text Solution

    |

  2. If 2X-Y=[(3,-3,0),(3,3,2)] and 2Y+X=[(4,1,5),(-1,4,-4)], then X=………………...

    Text Solution

    |

  3. If [(4),(1),(3)]A=[(-4,8,4),(-1,2,1),(-3,6,3)] then A=……….

    Text Solution

    |

  4. If A be any mxxn matrix and both AB and BA are defined then B should b...

    Text Solution

    |

  5. If A=[(1,0),(0,1)] then 7A^(3)+4A^(2)-11A=………………..

    Text Solution

    |

  6. If A=[(2,0,0),(0,2,0),(0,0,2)] then A^(2)=…………..

    Text Solution

    |

  7. If A=[(1,2,2),(2,1,2),(2,2,1)] then A^(2)-4A-5I=………….

    Text Solution

    |

  8. If A=[(1,0),(0,0)],B=[(0,1),(0 ,0)] then AB=………….

    Text Solution

    |

  9. If A=[(2,3,1),(3,1,5)],B=[(1,2,-1),(0,-1,3)] then 2A-3B=………….

    Text Solution

    |

  10. If A=[(9,1),(4,3)],B=[(1,5),(6,11)] and 3A+5B+2C=0 then C=………….

    Text Solution

    |

  11. If A=[(2,-2,-4),(-1,3,4),(1,-2,x)] is an idempotent matrix, then x=………...

    Text Solution

    |

  12. If A=[(2,1),(1,3)],B=[(3,2,0),(1,0,4)], then AB=…………..

    Text Solution

    |

  13. If A=[(1,3,0),(-1,2,1),(0,0,2)],B=[(2,3,4),(1,2,3),(-1,1,2)] then AB=…...

    Text Solution

    |

  14. If A=[(2,3,4),(1,2,3),(-1,1,2)],B=[(1,3,0),(-1,2,1),(0,0,2)], then AB+...

    Text Solution

    |

  15. If A=[(0,1,1),(1,2,0),(4,-1,3)] then Adj. A=……….

    Text Solution

    |

  16. The inverset of A=[(-4,-3,-3),(1,0,1),(4,4,3)] is ………

    Text Solution

    |

  17. If A=[(cos theta, - sin theta, 0),(sin theta, cos theta, 0),(0,0,1)] t...

    Text Solution

    |

  18. If A=[(1,2,3),(0,1,2),(0,0,1)] then A^(-1)=………..

    Text Solution

    |

  19. The inverse of [(3,5,7),(2,-3,1),(1,1,2)] is ……………

    Text Solution

    |