Home
Class 12
MATHS
If A=[(2,3,4),(1,2,3),(-1,1,2)],B=[(1,3,...

If `A=[(2,3,4),(1,2,3),(-1,1,2)],B=[(1,3,0),(-1,2,1),(0,0,2)]`, then AB+BA=………….

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate the matrices \( AB \) and \( BA \) and then add them together. Given the matrices: \[ A = \begin{pmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ -1 & 1 & 2 \end{pmatrix} \] \[ B = \begin{pmatrix} 1 & 3 & 0 \\ -1 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix} \] ### Step 1: Calculate \( AB \) To find \( AB \), we multiply matrix \( A \) by matrix \( B \). \[ AB = \begin{pmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ -1 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 3 & 0 \\ -1 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix} \] Calculating each element of the resulting matrix \( AB \): - First row, first column: \[ 2 \cdot 1 + 3 \cdot (-1) + 4 \cdot 0 = 2 - 3 + 0 = -1 \] - First row, second column: \[ 2 \cdot 3 + 3 \cdot 2 + 4 \cdot 0 = 6 + 6 + 0 = 12 \] - First row, third column: \[ 2 \cdot 0 + 3 \cdot 1 + 4 \cdot 2 = 0 + 3 + 8 = 11 \] - Second row, first column: \[ 1 \cdot 1 + 2 \cdot (-1) + 3 \cdot 0 = 1 - 2 + 0 = -1 \] - Second row, second column: \[ 1 \cdot 3 + 2 \cdot 2 + 3 \cdot 0 = 3 + 4 + 0 = 7 \] - Second row, third column: \[ 1 \cdot 0 + 2 \cdot 1 + 3 \cdot 2 = 0 + 2 + 6 = 8 \] - Third row, first column: \[ -1 \cdot 1 + 1 \cdot (-1) + 2 \cdot 0 = -1 - 1 + 0 = -2 \] - Third row, second column: \[ -1 \cdot 3 + 1 \cdot 2 + 2 \cdot 0 = -3 + 2 + 0 = -1 \] - Third row, third column: \[ -1 \cdot 0 + 1 \cdot 1 + 2 \cdot 2 = 0 + 1 + 4 = 5 \] Thus, the matrix \( AB \) is: \[ AB = \begin{pmatrix} -1 & 12 & 11 \\ -1 & 7 & 8 \\ -2 & -1 & 5 \end{pmatrix} \] ### Step 2: Calculate \( BA \) Now we calculate \( BA \) by multiplying matrix \( B \) by matrix \( A \). \[ BA = \begin{pmatrix} 1 & 3 & 0 \\ -1 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ -1 & 1 & 2 \end{pmatrix} \] Calculating each element of the resulting matrix \( BA \): - First row, first column: \[ 1 \cdot 2 + 3 \cdot 1 + 0 \cdot (-1) = 2 + 3 + 0 = 5 \] - First row, second column: \[ 1 \cdot 3 + 3 \cdot 2 + 0 \cdot 1 = 3 + 6 + 0 = 9 \] - First row, third column: \[ 1 \cdot 4 + 3 \cdot 3 + 0 \cdot 2 = 4 + 9 + 0 = 13 \] - Second row, first column: \[ -1 \cdot 2 + 2 \cdot 1 + 1 \cdot (-1) = -2 + 2 - 1 = -1 \] - Second row, second column: \[ -1 \cdot 3 + 2 \cdot 2 + 1 \cdot 1 = -3 + 4 + 1 = 2 \] - Second row, third column: \[ -1 \cdot 4 + 2 \cdot 3 + 1 \cdot 2 = -4 + 6 + 2 = 4 \] - Third row, first column: \[ 0 \cdot 2 + 0 \cdot 1 + 2 \cdot (-1) = 0 + 0 - 2 = -2 \] - Third row, second column: \[ 0 \cdot 3 + 0 \cdot 2 + 2 \cdot 1 = 0 + 0 + 2 = 2 \] - Third row, third column: \[ 0 \cdot 4 + 0 \cdot 3 + 2 \cdot 2 = 0 + 0 + 4 = 4 \] Thus, the matrix \( BA \) is: \[ BA = \begin{pmatrix} 5 & 9 & 13 \\ -1 & 2 & 4 \\ -2 & 2 & 4 \end{pmatrix} \] ### Step 3: Calculate \( AB + BA \) Now we add the matrices \( AB \) and \( BA \): \[ AB + BA = \begin{pmatrix} -1 & 12 & 11 \\ -1 & 7 & 8 \\ -2 & -1 & 5 \end{pmatrix} + \begin{pmatrix} 5 & 9 & 13 \\ -1 & 2 & 4 \\ -2 & 2 & 4 \end{pmatrix} \] Adding the corresponding elements: - First row: \[ -1 + 5 = 4, \quad 12 + 9 = 21, \quad 11 + 13 = 24 \] - Second row: \[ -1 + (-1) = -2, \quad 7 + 2 = 9, \quad 8 + 4 = 12 \] - Third row: \[ -2 + (-2) = -4, \quad -1 + 2 = 1, \quad 5 + 4 = 9 \] Thus, the final result is: \[ AB + BA = \begin{pmatrix} 4 & 21 & 24 \\ -2 & 9 & 12 \\ -4 & 1 & 9 \end{pmatrix} \] ### Final Answer: \[ AB + BA = \begin{pmatrix} 4 & 21 & 24 \\ -2 & 9 & 12 \\ -4 & 1 & 9 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ML KHANNA|Exercise SELF ASSESSMENT TEST|13 Videos
  • MATRICES

    ML KHANNA|Exercise COMPREHENSION|3 Videos
  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (TRUE AND FALSE)|9 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise MISCELANEOUS EXERCISE (COMPREHENSION)|3 Videos

Similar Questions

Explore conceptually related problems

If A=[[2,3,4],[1,2,3],[-1,1,2]], B=[[1,3,0],[-1,2,1],[0,0,2]] , find AB and BA and show that AB!=BA

if A=[{:(4,3,2),(-1,2,0):}], B=[{:(1,2),(-1,0),(1,-2):}] then |AB| = ……..

If A = [(0,1),(2,3),(1,-1)]and B = [(1,2,1),(2,1,0)] , then find (AB)^(-1)

Let A=[(1,2,3),(2,3,4),(-1,1,2)] and B=[(0,2,-1),(0,3,4),(0,-2,-3)] Find AB and BA ?

If A=[(2,1,3),(4,1,0)] and B=[(1,-1),(0,2),(5,0)] , then AB will be

If A'=[(3,4),(-1,2),(0,1)] and B=[(-1,2,1),(1,2,3)] , then verify that (A+B)'=A'+B'

ML KHANNA-MATRICES-PROBLEM SET(1) (FILL IN THE BLANKS)
  1. Is it possible to define the matrix A + B when a. A has 3 rows and B...

    Text Solution

    |

  2. If 2X-Y=[(3,-3,0),(3,3,2)] and 2Y+X=[(4,1,5),(-1,4,-4)], then X=………………...

    Text Solution

    |

  3. If [(4),(1),(3)]A=[(-4,8,4),(-1,2,1),(-3,6,3)] then A=……….

    Text Solution

    |

  4. If A be any mxxn matrix and both AB and BA are defined then B should b...

    Text Solution

    |

  5. If A=[(1,0),(0,1)] then 7A^(3)+4A^(2)-11A=………………..

    Text Solution

    |

  6. If A=[(2,0,0),(0,2,0),(0,0,2)] then A^(2)=…………..

    Text Solution

    |

  7. If A=[(1,2,2),(2,1,2),(2,2,1)] then A^(2)-4A-5I=………….

    Text Solution

    |

  8. If A=[(1,0),(0,0)],B=[(0,1),(0 ,0)] then AB=………….

    Text Solution

    |

  9. If A=[(2,3,1),(3,1,5)],B=[(1,2,-1),(0,-1,3)] then 2A-3B=………….

    Text Solution

    |

  10. If A=[(9,1),(4,3)],B=[(1,5),(6,11)] and 3A+5B+2C=0 then C=………….

    Text Solution

    |

  11. If A=[(2,-2,-4),(-1,3,4),(1,-2,x)] is an idempotent matrix, then x=………...

    Text Solution

    |

  12. If A=[(2,1),(1,3)],B=[(3,2,0),(1,0,4)], then AB=…………..

    Text Solution

    |

  13. If A=[(1,3,0),(-1,2,1),(0,0,2)],B=[(2,3,4),(1,2,3),(-1,1,2)] then AB=…...

    Text Solution

    |

  14. If A=[(2,3,4),(1,2,3),(-1,1,2)],B=[(1,3,0),(-1,2,1),(0,0,2)], then AB+...

    Text Solution

    |

  15. If A=[(0,1,1),(1,2,0),(4,-1,3)] then Adj. A=……….

    Text Solution

    |

  16. The inverset of A=[(-4,-3,-3),(1,0,1),(4,4,3)] is ………

    Text Solution

    |

  17. If A=[(cos theta, - sin theta, 0),(sin theta, cos theta, 0),(0,0,1)] t...

    Text Solution

    |

  18. If A=[(1,2,3),(0,1,2),(0,0,1)] then A^(-1)=………..

    Text Solution

    |

  19. The inverse of [(3,5,7),(2,-3,1),(1,1,2)] is ……………

    Text Solution

    |