Home
Class 12
MATHS
If A=[(0,1,1),(1,2,0),(4,-1,3)] then Adj...

If `A=[(0,1,1),(1,2,0),(4,-1,3)]` then Adj. A=……….

Text Solution

AI Generated Solution

The correct Answer is:
To find the adjoint of the matrix \( A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 2 & 0 \\ 4 & -1 & 3 \end{pmatrix} \), we will follow these steps: ### Step 1: Find the Cofactor Matrix The cofactor \( C_{ij} \) of an element \( a_{ij} \) is given by: \[ C_{ij} = (-1)^{i+j} M_{ij} \] where \( M_{ij} \) is the minor of the element \( a_{ij} \), which is the determinant of the matrix obtained by deleting the \( i \)-th row and \( j \)-th column from \( A \). #### Calculation of Cofactors: 1. **Cofactor \( C_{11} \)**: - Minor \( M_{11} = \det\begin{pmatrix} 2 & 0 \\ -1 & 3 \end{pmatrix} = (2)(3) - (0)(-1) = 6 \) - \( C_{11} = (-1)^{1+1} M_{11} = 1 \cdot 6 = 6 \) 2. **Cofactor \( C_{12} \)**: - Minor \( M_{12} = \det\begin{pmatrix} 1 & 0 \\ 4 & 3 \end{pmatrix} = (1)(3) - (0)(4) = 3 \) - \( C_{12} = (-1)^{1+2} M_{12} = -1 \cdot 3 = -3 \) 3. **Cofactor \( C_{13} \)**: - Minor \( M_{13} = \det\begin{pmatrix} 1 & 2 \\ 4 & -1 \end{pmatrix} = (1)(-1) - (2)(4) = -1 - 8 = -9 \) - \( C_{13} = (-1)^{1+3} M_{13} = 1 \cdot (-9) = -9 \) 4. **Cofactor \( C_{21} \)**: - Minor \( M_{21} = \det\begin{pmatrix} 1 & 1 \\ -1 & 3 \end{pmatrix} = (1)(3) - (1)(-1) = 3 + 1 = 4 \) - \( C_{21} = (-1)^{2+1} M_{21} = -1 \cdot 4 = -4 \) 5. **Cofactor \( C_{22} \)**: - Minor \( M_{22} = \det\begin{pmatrix} 0 & 1 \\ 4 & 3 \end{pmatrix} = (0)(3) - (1)(4) = -4 \) - \( C_{22} = (-1)^{2+2} M_{22} = 1 \cdot (-4) = -4 \) 6. **Cofactor \( C_{23} \)**: - Minor \( M_{23} = \det\begin{pmatrix} 0 & 1 \\ 4 & -1 \end{pmatrix} = (0)(-1) - (1)(4) = -4 \) - \( C_{23} = (-1)^{2+3} M_{23} = -1 \cdot (-4) = 4 \) 7. **Cofactor \( C_{31} \)**: - Minor \( M_{31} = \det\begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix} = (1)(0) - (1)(2) = -2 \) - \( C_{31} = (-1)^{3+1} M_{31} = 1 \cdot (-2) = -2 \) 8. **Cofactor \( C_{32} \)**: - Minor \( M_{32} = \det\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = (0)(0) - (1)(1) = -1 \) - \( C_{32} = (-1)^{3+2} M_{32} = -1 \cdot (-1) = 1 \) 9. **Cofactor \( C_{33} \)**: - Minor \( M_{33} = \det\begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix} = (0)(2) - (1)(1) = -1 \) - \( C_{33} = (-1)^{3+3} M_{33} = 1 \cdot (-1) = -1 \) #### Cofactor Matrix: Now, we can write the cofactor matrix \( C \): \[ C = \begin{pmatrix} 6 & -3 & -9 \\ -4 & -4 & 4 \\ -2 & 1 & -1 \end{pmatrix} \] ### Step 2: Transpose the Cofactor Matrix To find the adjoint, we need to transpose the cofactor matrix: \[ \text{Adj}(A) = C^T = \begin{pmatrix} 6 & -4 & -2 \\ -3 & -4 & 1 \\ -9 & 4 & -1 \end{pmatrix} \] ### Final Answer: Thus, the adjoint of matrix \( A \) is: \[ \text{Adj}(A) = \begin{pmatrix} 6 & -4 & -2 \\ -3 & -4 & 1 \\ -9 & 4 & -1 \end{pmatrix} \] ---
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ML KHANNA|Exercise SELF ASSESSMENT TEST|13 Videos
  • MATRICES

    ML KHANNA|Exercise COMPREHENSION|3 Videos
  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (TRUE AND FALSE)|9 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise MISCELANEOUS EXERCISE (COMPREHENSION)|3 Videos

Similar Questions

Explore conceptually related problems

If A = [(1,1,1),(1,2,-3),(2,-1,3)] then | adj A| =

If {:A=[(0,1,-1),(2,1,3),(3,2,1)]:} then (A(adj A)A^(-1))A=

If A[(2,0,3),(1,-1,2),(3,-2,0)] , then (adj A)A=

If A=[(3,2,-1),(4,-1,2),(0,1,2)] then adj (adjA) is

If A =[{:(2,0,0),(0,1,0),(0,0,1):}] then adj(A) =

If A=|[1,0,1],[0,1,2],[0,0,4]| then |3A|

Find the adjoint of the given matrix and verify in ach case that A.(adj A)=(adj A).A=|A\|.I. If A=[(-4,-3,-3),(1,0,1),(4,4,3)] ,show that adj A=A.

ML KHANNA-MATRICES-PROBLEM SET(1) (FILL IN THE BLANKS)
  1. Is it possible to define the matrix A + B when a. A has 3 rows and B...

    Text Solution

    |

  2. If 2X-Y=[(3,-3,0),(3,3,2)] and 2Y+X=[(4,1,5),(-1,4,-4)], then X=………………...

    Text Solution

    |

  3. If [(4),(1),(3)]A=[(-4,8,4),(-1,2,1),(-3,6,3)] then A=……….

    Text Solution

    |

  4. If A be any mxxn matrix and both AB and BA are defined then B should b...

    Text Solution

    |

  5. If A=[(1,0),(0,1)] then 7A^(3)+4A^(2)-11A=………………..

    Text Solution

    |

  6. If A=[(2,0,0),(0,2,0),(0,0,2)] then A^(2)=…………..

    Text Solution

    |

  7. If A=[(1,2,2),(2,1,2),(2,2,1)] then A^(2)-4A-5I=………….

    Text Solution

    |

  8. If A=[(1,0),(0,0)],B=[(0,1),(0 ,0)] then AB=………….

    Text Solution

    |

  9. If A=[(2,3,1),(3,1,5)],B=[(1,2,-1),(0,-1,3)] then 2A-3B=………….

    Text Solution

    |

  10. If A=[(9,1),(4,3)],B=[(1,5),(6,11)] and 3A+5B+2C=0 then C=………….

    Text Solution

    |

  11. If A=[(2,-2,-4),(-1,3,4),(1,-2,x)] is an idempotent matrix, then x=………...

    Text Solution

    |

  12. If A=[(2,1),(1,3)],B=[(3,2,0),(1,0,4)], then AB=…………..

    Text Solution

    |

  13. If A=[(1,3,0),(-1,2,1),(0,0,2)],B=[(2,3,4),(1,2,3),(-1,1,2)] then AB=…...

    Text Solution

    |

  14. If A=[(2,3,4),(1,2,3),(-1,1,2)],B=[(1,3,0),(-1,2,1),(0,0,2)], then AB+...

    Text Solution

    |

  15. If A=[(0,1,1),(1,2,0),(4,-1,3)] then Adj. A=……….

    Text Solution

    |

  16. The inverset of A=[(-4,-3,-3),(1,0,1),(4,4,3)] is ………

    Text Solution

    |

  17. If A=[(cos theta, - sin theta, 0),(sin theta, cos theta, 0),(0,0,1)] t...

    Text Solution

    |

  18. If A=[(1,2,3),(0,1,2),(0,0,1)] then A^(-1)=………..

    Text Solution

    |

  19. The inverse of [(3,5,7),(2,-3,1),(1,1,2)] is ……………

    Text Solution

    |