Home
Class 12
MATHS
The inverset of A=[(-4,-3,-3),(1,0,1),(4...

The inverset of `A=[(-4,-3,-3),(1,0,1),(4,4,3)]` is ………

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{pmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{pmatrix} \), we will follow these steps: ### Step 1: Find the Determinant of Matrix A The determinant of a 3x3 matrix \( A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \) is calculated using the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \( A \): - \( a = -4, b = -3, c = -3 \) - \( d = 1, e = 0, f = 1 \) - \( g = 4, h = 4, i = 3 \) Calculating the determinant: \[ \text{det}(A) = -4(0 \cdot 3 - 1 \cdot 4) - (-3)(1 \cdot 3 - 1 \cdot 4) + (-3)(1 \cdot 4 - 0 \cdot 4) \] Calculating each term: 1. \( -4(0 - 4) = -4 \cdot -4 = 16 \) 2. \( -(-3)(3 - 4) = 3 \cdot -1 = -3 \) 3. \( -3(4 - 0) = -3 \cdot 4 = -12 \) Now, summing these values: \[ \text{det}(A) = 16 - 3 - 12 = 1 \] ### Step 2: Find the Cofactor Matrix The cofactor \( C_{ij} \) is calculated using the formula: \[ C_{ij} = (-1)^{i+j} M_{ij} \] where \( M_{ij} \) is the determinant of the matrix obtained by deleting the \( i^{th} \) row and \( j^{th} \) column. Calculating the cofactors: 1. \( C_{11} = M_{11} = \text{det} \begin{pmatrix} 0 & 1 \\ 4 & 3 \end{pmatrix} = 0 \cdot 3 - 1 \cdot 4 = -4 \) 2. \( C_{12} = -M_{12} = -\text{det} \begin{pmatrix} 1 & 1 \\ 4 & 3 \end{pmatrix} = - (1 \cdot 3 - 1 \cdot 4) = -(-1) = 1 \) 3. \( C_{13} = M_{13} = \text{det} \begin{pmatrix} 1 & 0 \\ 4 & 4 \end{pmatrix} = 1 \cdot 4 - 0 \cdot 4 = 4 \) Continuing with the second row: 4. \( C_{21} = -M_{21} = -\text{det} \begin{pmatrix} -3 & -3 \\ 4 & 3 \end{pmatrix} = -((-3) \cdot 3 - (-3) \cdot 4) = -(-9 + 12) = -3 \) 5. \( C_{22} = M_{22} = \text{det} \begin{pmatrix} -4 & -3 \\ 4 & 3 \end{pmatrix} = -4 \cdot 3 - (-3) \cdot 4 = -12 + 12 = 0 \) 6. \( C_{23} = -M_{23} = -\text{det} \begin{pmatrix} -4 & -3 \\ 1 & 4 \end{pmatrix} = -((-4) \cdot 4 - (-3) \cdot 1) = -(-16 + 3) = -(-13) = 13 \) Continuing with the third row: 7. \( C_{31} = M_{31} = \text{det} \begin{pmatrix} -3 & -3 \\ 0 & 1 \end{pmatrix} = -3 \cdot 1 - (-3) \cdot 0 = -3 \) 8. \( C_{32} = -M_{32} = -\text{det} \begin{pmatrix} -4 & -3 \\ 1 & 1 \end{pmatrix} = -((-4) \cdot 1 - (-3) \cdot 1) = -(-4 + 3) = -(-1) = 1 \) 9. \( C_{33} = M_{33} = \text{det} \begin{pmatrix} -4 & -3 \\ 1 & 0 \end{pmatrix} = -4 \cdot 0 - (-3) \cdot 1 = 3 \) Thus, the cofactor matrix is: \[ \text{Cofactor}(A) = \begin{pmatrix} -4 & 1 & 4 \\ 3 & 0 & 13 \\ -3 & 1 & 3 \end{pmatrix} \] ### Step 3: Find the Adjoint of A The adjoint of a matrix is the transpose of the cofactor matrix: \[ \text{Adj}(A) = \begin{pmatrix} -4 & 3 & -3 \\ 1 & 0 & 1 \\ 4 & 13 & 3 \end{pmatrix} \] ### Step 4: Calculate the Inverse of A The inverse of a matrix is given by: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{Adj}(A) \] Since \( \text{det}(A) = 1 \): \[ A^{-1} = 1 \cdot \text{Adj}(A) = \text{Adj}(A) \] Thus, the inverse is: \[ A^{-1} = \begin{pmatrix} -4 & 3 & -3 \\ 1 & 0 & 1 \\ 4 & 13 & 3 \end{pmatrix} \] ### Final Answer The inverse of \( A \) is: \[ A^{-1} = \begin{pmatrix} -4 & 3 & -3 \\ 1 & 0 & 1 \\ 4 & 13 & 3 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ML KHANNA|Exercise SELF ASSESSMENT TEST|13 Videos
  • MATRICES

    ML KHANNA|Exercise COMPREHENSION|3 Videos
  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (TRUE AND FALSE)|9 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise MISCELANEOUS EXERCISE (COMPREHENSION)|3 Videos

Similar Questions

Explore conceptually related problems

If A = [(-4,-3,-3),(1,0,1),(4,4,3)] , find adj (A)

If A=[(2,-2,-4),(-1,3,4),(1,-2,-3)] and B=[(-4,-3,-3),(1,0,1),(4,4,3)] are two matrices, then the value of the determinant (A+A^(2)B^(2)+A^(3)+A^(4)B^(4)+"………"20" terms")

If A=[(3,-3,4),(2,-3,4),(0,-1,1)] , then :

Adjoint of the matrix N=[[-4, -3, -3], [1, 0, 1], [4, 4, 3]] is

(i) if A=[{:(4,-1,-4),(3,0,-4),(3,-1,-3):}], then show that A^(2)=I

If A=[(3,-3,4),(2,-3,4),(0,-1,1)] , then A^(-1)=

The points (-2,3,4), (1,1,2) and (4,-1,0) are

ML KHANNA-MATRICES-PROBLEM SET(1) (FILL IN THE BLANKS)
  1. Is it possible to define the matrix A + B when a. A has 3 rows and B...

    Text Solution

    |

  2. If 2X-Y=[(3,-3,0),(3,3,2)] and 2Y+X=[(4,1,5),(-1,4,-4)], then X=………………...

    Text Solution

    |

  3. If [(4),(1),(3)]A=[(-4,8,4),(-1,2,1),(-3,6,3)] then A=……….

    Text Solution

    |

  4. If A be any mxxn matrix and both AB and BA are defined then B should b...

    Text Solution

    |

  5. If A=[(1,0),(0,1)] then 7A^(3)+4A^(2)-11A=………………..

    Text Solution

    |

  6. If A=[(2,0,0),(0,2,0),(0,0,2)] then A^(2)=…………..

    Text Solution

    |

  7. If A=[(1,2,2),(2,1,2),(2,2,1)] then A^(2)-4A-5I=………….

    Text Solution

    |

  8. If A=[(1,0),(0,0)],B=[(0,1),(0 ,0)] then AB=………….

    Text Solution

    |

  9. If A=[(2,3,1),(3,1,5)],B=[(1,2,-1),(0,-1,3)] then 2A-3B=………….

    Text Solution

    |

  10. If A=[(9,1),(4,3)],B=[(1,5),(6,11)] and 3A+5B+2C=0 then C=………….

    Text Solution

    |

  11. If A=[(2,-2,-4),(-1,3,4),(1,-2,x)] is an idempotent matrix, then x=………...

    Text Solution

    |

  12. If A=[(2,1),(1,3)],B=[(3,2,0),(1,0,4)], then AB=…………..

    Text Solution

    |

  13. If A=[(1,3,0),(-1,2,1),(0,0,2)],B=[(2,3,4),(1,2,3),(-1,1,2)] then AB=…...

    Text Solution

    |

  14. If A=[(2,3,4),(1,2,3),(-1,1,2)],B=[(1,3,0),(-1,2,1),(0,0,2)], then AB+...

    Text Solution

    |

  15. If A=[(0,1,1),(1,2,0),(4,-1,3)] then Adj. A=……….

    Text Solution

    |

  16. The inverset of A=[(-4,-3,-3),(1,0,1),(4,4,3)] is ………

    Text Solution

    |

  17. If A=[(cos theta, - sin theta, 0),(sin theta, cos theta, 0),(0,0,1)] t...

    Text Solution

    |

  18. If A=[(1,2,3),(0,1,2),(0,0,1)] then A^(-1)=………..

    Text Solution

    |

  19. The inverse of [(3,5,7),(2,-3,1),(1,1,2)] is ……………

    Text Solution

    |