Home
Class 12
MATHS
If A=[(cos theta, - sin theta, 0),(sin t...

If `A=[(cos theta, - sin theta, 0),(sin theta, cos theta, 0),(0,0,1)]` then `A^(-1)`=………..

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A \) given by \[ A = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \] we can use the formula for the inverse of a matrix, which is given by \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] ### Step 1: Calculate the Determinant of \( A \) To find the determinant of \( A \), we can use the formula for the determinant of a \( 3 \times 3 \) matrix: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \( A \): \[ \text{det}(A) = \cos \theta \cdot (\cos \theta \cdot 1 - 0 \cdot 0) - (-\sin \theta) \cdot (\sin \theta \cdot 1 - 0 \cdot 0) + 0 \cdot (0 - 0) \] Calculating this gives: \[ \text{det}(A) = \cos^2 \theta + \sin^2 \theta = 1 \] ### Step 2: Calculate the Adjoint of \( A \) The adjoint of a \( 3 \times 3 \) matrix is the transpose of the cofactor matrix. We will compute the cofactors for each element of \( A \). 1. **Cofactor \( C_{11} \)**: \[ C_{11} = \text{det} \begin{pmatrix} \cos \theta & 0 \\ 0 & 1 \end{pmatrix} = \cos \theta \] 2. **Cofactor \( C_{12} \)**: \[ C_{12} = -\text{det} \begin{pmatrix} \sin \theta & 0 \\ 0 & 1 \end{pmatrix} = -\sin \theta \] 3. **Cofactor \( C_{13} \)**: \[ C_{13} = \text{det} \begin{pmatrix} \sin \theta & \cos \theta \\ 0 & 0 \end{pmatrix} = 0 \] 4. **Cofactor \( C_{21} \)**: \[ C_{21} = -\text{det} \begin{pmatrix} -\sin \theta & 0 \\ 0 & 1 \end{pmatrix} = -(-\sin \theta) = \sin \theta \] 5. **Cofactor \( C_{22} \)**: \[ C_{22} = \text{det} \begin{pmatrix} \cos \theta & 0 \\ 0 & 1 \end{pmatrix} = \cos \theta \] 6. **Cofactor \( C_{23} \)**: \[ C_{23} = -\text{det} \begin{pmatrix} \cos \theta & -\sin \theta \\ 0 & 0 \end{pmatrix} = 0 \] 7. **Cofactor \( C_{31} \)**: \[ C_{31} = \text{det} \begin{pmatrix} -\sin \theta & 0 \\ \cos \theta & 0 \end{pmatrix} = 0 \] 8. **Cofactor \( C_{32} \)**: \[ C_{32} = -\text{det} \begin{pmatrix} \cos \theta & 0 \\ \sin \theta & 0 \end{pmatrix} = 0 \] 9. **Cofactor \( C_{33} \)**: \[ C_{33} = \text{det} \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} = \cos^2 \theta + \sin^2 \theta = 1 \] Now, we can write the cofactor matrix: \[ \text{Cofactor}(A) = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \] Taking the transpose gives us the adjoint: \[ \text{adj}(A) = \begin{pmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 3: Calculate \( A^{-1} \) Using the formula for the inverse: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) = \frac{1}{1} \cdot \begin{pmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \] Thus, we have: \[ A^{-1} = \begin{pmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ML KHANNA|Exercise SELF ASSESSMENT TEST|13 Videos
  • MATRICES

    ML KHANNA|Exercise COMPREHENSION|3 Videos
  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (TRUE AND FALSE)|9 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise MISCELANEOUS EXERCISE (COMPREHENSION)|3 Videos

Similar Questions

Explore conceptually related problems

If f(theta)=[(cos theta, -sin theta,0),(sin theta, cos theta, 0),(0,0,1)] then {f(theta)^(-1)} is equal to

cos m theta-sin n theta=0

What is the inverse of the matrix A= ({:(cos theta, sin theta ,0),(- sin theta, cos theta,0),(0 , 0, 1):})

If the matrix ({:(cos theta, sin theta, 0),(sin theta, cos theta, 0),(0,0,1):}) is singular, then what is one of the value of theta ?

Find the inverse of A=[[cos theta,-sin theta,0sin theta,cos theta,00,0,1]]

If the matrix [{:(cos theta,sin theta,0),(sin theta,cos theta,0),(0,0,1):}] is singular, then what is one of the values of theta ?

If A=[(-cos theta, -sin theta),(-cos theta, sin theta)] and A(adjA)=lamda[(1,0),(0,1)] then lamda is equal to

Solve sin2 theta+cos theta=0

(cos^(2)theta)/(sin theta)-cosec theta+sin theta=0

ML KHANNA-MATRICES-PROBLEM SET(1) (FILL IN THE BLANKS)
  1. Is it possible to define the matrix A + B when a. A has 3 rows and B...

    Text Solution

    |

  2. If 2X-Y=[(3,-3,0),(3,3,2)] and 2Y+X=[(4,1,5),(-1,4,-4)], then X=………………...

    Text Solution

    |

  3. If [(4),(1),(3)]A=[(-4,8,4),(-1,2,1),(-3,6,3)] then A=……….

    Text Solution

    |

  4. If A be any mxxn matrix and both AB and BA are defined then B should b...

    Text Solution

    |

  5. If A=[(1,0),(0,1)] then 7A^(3)+4A^(2)-11A=………………..

    Text Solution

    |

  6. If A=[(2,0,0),(0,2,0),(0,0,2)] then A^(2)=…………..

    Text Solution

    |

  7. If A=[(1,2,2),(2,1,2),(2,2,1)] then A^(2)-4A-5I=………….

    Text Solution

    |

  8. If A=[(1,0),(0,0)],B=[(0,1),(0 ,0)] then AB=………….

    Text Solution

    |

  9. If A=[(2,3,1),(3,1,5)],B=[(1,2,-1),(0,-1,3)] then 2A-3B=………….

    Text Solution

    |

  10. If A=[(9,1),(4,3)],B=[(1,5),(6,11)] and 3A+5B+2C=0 then C=………….

    Text Solution

    |

  11. If A=[(2,-2,-4),(-1,3,4),(1,-2,x)] is an idempotent matrix, then x=………...

    Text Solution

    |

  12. If A=[(2,1),(1,3)],B=[(3,2,0),(1,0,4)], then AB=…………..

    Text Solution

    |

  13. If A=[(1,3,0),(-1,2,1),(0,0,2)],B=[(2,3,4),(1,2,3),(-1,1,2)] then AB=…...

    Text Solution

    |

  14. If A=[(2,3,4),(1,2,3),(-1,1,2)],B=[(1,3,0),(-1,2,1),(0,0,2)], then AB+...

    Text Solution

    |

  15. If A=[(0,1,1),(1,2,0),(4,-1,3)] then Adj. A=……….

    Text Solution

    |

  16. The inverset of A=[(-4,-3,-3),(1,0,1),(4,4,3)] is ………

    Text Solution

    |

  17. If A=[(cos theta, - sin theta, 0),(sin theta, cos theta, 0),(0,0,1)] t...

    Text Solution

    |

  18. If A=[(1,2,3),(0,1,2),(0,0,1)] then A^(-1)=………..

    Text Solution

    |

  19. The inverse of [(3,5,7),(2,-3,1),(1,1,2)] is ……………

    Text Solution

    |