Home
Class 12
MATHS
If A=[(1,2,3),(0,1,2),(0,0,1)] then A^(-...

If `A=[(1,2,3),(0,1,2),(0,0,1)]` then `A^(-1)`=………..

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of \( A \) The determinant of a \( 3 \times 3 \) matrix \( A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \) is calculated using the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \( A \): \[ \text{det}(A) = 1 \cdot (1 \cdot 1 - 2 \cdot 0) - 2 \cdot (0 \cdot 1 - 2 \cdot 0) + 3 \cdot (0 \cdot 0 - 1 \cdot 0) \] Calculating this gives: \[ \text{det}(A) = 1 \cdot (1 - 0) - 2 \cdot (0 - 0) + 3 \cdot (0 - 0) = 1 \] ### Step 2: Calculate the Cofactor Matrix of \( A \) The cofactor \( C_{ij} \) is calculated using the formula: \[ C_{ij} = (-1)^{i+j} \cdot M_{ij} \] where \( M_{ij} \) is the determinant of the matrix obtained by deleting the \( i \)-th row and \( j \)-th column. Calculating the cofactors: - \( C_{11} = \text{det} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} = 1 \) - \( C_{12} = -\text{det} \begin{pmatrix} 0 & 2 \\ 0 & 1 \end{pmatrix} = 0 \) - \( C_{13} = \text{det} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = 0 \) - \( C_{21} = -\text{det} \begin{pmatrix} 2 & 3 \\ 0 & 1 \end{pmatrix} = -2 \) - \( C_{22} = \text{det} \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix} = 1 \) - \( C_{23} = -\text{det} \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix} = 0 \) - \( C_{31} = \text{det} \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix} = 1 \) - \( C_{32} = -\text{det} \begin{pmatrix} 1 & 3 \\ 0 & 2 \end{pmatrix} = -2 \) - \( C_{33} = \text{det} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} = 1 \) Thus, the cofactor matrix \( C \) is: \[ C = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & -2 & 1 \end{pmatrix} \] ### Step 3: Calculate the Adjoint of \( A \) The adjoint of \( A \) is the transpose of the cofactor matrix: \[ \text{adj}(A) = C^T = \begin{pmatrix} 1 & -2 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 4: Calculate the Inverse of \( A \) Finally, we use the formula for the inverse of a matrix: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Since \( \text{det}(A) = 1 \): \[ A^{-1} = 1 \cdot \begin{pmatrix} 1 & -2 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -2 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix} \] ### Final Answer \[ A^{-1} = \begin{pmatrix} 1 & -2 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ML KHANNA|Exercise SELF ASSESSMENT TEST|13 Videos
  • MATRICES

    ML KHANNA|Exercise COMPREHENSION|3 Videos
  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (TRUE AND FALSE)|9 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise MISCELANEOUS EXERCISE (COMPREHENSION)|3 Videos

Similar Questions

Explore conceptually related problems

If A=|[1,0,1],[0,1,2],[0,0,4]| then |3A|

If A[(1, 0, 0),(x, 1, 0),(x, x, 1)] and I=[(1, 0, 0),(0,1,0),(0,0,1)] , then A^(3)-3A^(2)+3A is equal to

If P=[(1,2,4),(3,1,0),(0,0,1)], Q=[(1,-2,-3),(-3,1,9),(0,0,-5)] then (PQ)^(-1) equals to

If A[(2,0,3),(1,-1,2),(3,-2,0)] , then (adj A)A=

If A^(-1)=[(1,-1,2),(0,3,1),(0,0,-1//3)] , then

Let a be a 3xx3 matric such that [(1,2,3),(0,2,3),(0,1,1)]=[(0,0,1),(1,0,0),(0,1,0)] , then find A^(-1) .

[(1,3,-2),(-3,0,-5),(2,5,0)] =A [(1,0,0),(0,1,0),(0,0,1)] then, C_(2) rarr C_(2)-3C_(1) and C_(3) rarr C_(3) +2C_(1) gives

If A=((1,0,0),(0,2,1),(1,0,3)) then (A-I)(A-2I)(A-3I)=

If {:A=[(1,2,x),(0,1,0),(0,0,1)]andB=[(1,-2,y),(0,1,0),(0,0,1)]:} and AB=I_3 , then x + y equals

ML KHANNA-MATRICES-PROBLEM SET(1) (FILL IN THE BLANKS)
  1. Is it possible to define the matrix A + B when a. A has 3 rows and B...

    Text Solution

    |

  2. If 2X-Y=[(3,-3,0),(3,3,2)] and 2Y+X=[(4,1,5),(-1,4,-4)], then X=………………...

    Text Solution

    |

  3. If [(4),(1),(3)]A=[(-4,8,4),(-1,2,1),(-3,6,3)] then A=……….

    Text Solution

    |

  4. If A be any mxxn matrix and both AB and BA are defined then B should b...

    Text Solution

    |

  5. If A=[(1,0),(0,1)] then 7A^(3)+4A^(2)-11A=………………..

    Text Solution

    |

  6. If A=[(2,0,0),(0,2,0),(0,0,2)] then A^(2)=…………..

    Text Solution

    |

  7. If A=[(1,2,2),(2,1,2),(2,2,1)] then A^(2)-4A-5I=………….

    Text Solution

    |

  8. If A=[(1,0),(0,0)],B=[(0,1),(0 ,0)] then AB=………….

    Text Solution

    |

  9. If A=[(2,3,1),(3,1,5)],B=[(1,2,-1),(0,-1,3)] then 2A-3B=………….

    Text Solution

    |

  10. If A=[(9,1),(4,3)],B=[(1,5),(6,11)] and 3A+5B+2C=0 then C=………….

    Text Solution

    |

  11. If A=[(2,-2,-4),(-1,3,4),(1,-2,x)] is an idempotent matrix, then x=………...

    Text Solution

    |

  12. If A=[(2,1),(1,3)],B=[(3,2,0),(1,0,4)], then AB=…………..

    Text Solution

    |

  13. If A=[(1,3,0),(-1,2,1),(0,0,2)],B=[(2,3,4),(1,2,3),(-1,1,2)] then AB=…...

    Text Solution

    |

  14. If A=[(2,3,4),(1,2,3),(-1,1,2)],B=[(1,3,0),(-1,2,1),(0,0,2)], then AB+...

    Text Solution

    |

  15. If A=[(0,1,1),(1,2,0),(4,-1,3)] then Adj. A=……….

    Text Solution

    |

  16. The inverset of A=[(-4,-3,-3),(1,0,1),(4,4,3)] is ………

    Text Solution

    |

  17. If A=[(cos theta, - sin theta, 0),(sin theta, cos theta, 0),(0,0,1)] t...

    Text Solution

    |

  18. If A=[(1,2,3),(0,1,2),(0,0,1)] then A^(-1)=………..

    Text Solution

    |

  19. The inverse of [(3,5,7),(2,-3,1),(1,1,2)] is ……………

    Text Solution

    |