Home
Class 12
MATHS
The inverse of [(3,5,7),(2,-3,1),(1,1,2)...

The inverse of `[(3,5,7),(2,-3,1),(1,1,2)]` is ……………

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{pmatrix} 3 & 5 & 7 \\ 2 & -3 & 1 \\ 1 & 1 & 2 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of Matrix A The determinant of a 3x3 matrix \( A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \) is given by: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix: \[ \text{det}(A) = 3((-3)(2) - (1)(1)) - 5((2)(2) - (1)(1)) + 7((2)(1) - (-3)(1)) \] Calculating each term: - \( 3((-6) - 1) = 3(-7) = -21 \) - \( -5(4 - 1) = -5(3) = -15 \) - \( 7(2 + 3) = 7(5) = 35 \) So, \[ \text{det}(A) = -21 + 15 + 35 = 29 \] ### Step 2: Find the Matrix of Minors Next, we calculate the minors for each element of the matrix. - Minor of \( a_{11} = 3 \): \[ \begin{vmatrix} -3 & 1 \\ 1 & 2 \end{vmatrix} = (-3)(2) - (1)(1) = -6 - 1 = -7 \] - Minor of \( a_{12} = 5 \): \[ \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} = (2)(2) - (1)(1) = 4 - 1 = 3 \] - Minor of \( a_{13} = 7 \): \[ \begin{vmatrix} 2 & -3 \\ 1 & 1 \end{vmatrix} = (2)(1) - (-3)(1) = 2 + 3 = 5 \] - Minor of \( a_{21} = 2 \): \[ \begin{vmatrix} 5 & 7 \\ 1 & 2 \end{vmatrix} = (5)(2) - (7)(1) = 10 - 7 = 3 \] - Minor of \( a_{22} = -3 \): \[ \begin{vmatrix} 3 & 7 \\ 1 & 2 \end{vmatrix} = (3)(2) - (7)(1) = 6 - 7 = -1 \] - Minor of \( a_{23} = 1 \): \[ \begin{vmatrix} 3 & 5 \\ 1 & 1 \end{vmatrix} = (3)(1) - (5)(1) = 3 - 5 = -2 \] - Minor of \( a_{31} = 1 \): \[ \begin{vmatrix} 5 & 7 \\ -3 & 1 \end{vmatrix} = (5)(1) - (7)(-3) = 5 + 21 = 26 \] - Minor of \( a_{32} = 1 \): \[ \begin{vmatrix} 3 & 7 \\ 2 & 1 \end{vmatrix} = (3)(1) - (7)(2) = 3 - 14 = -11 \] - Minor of \( a_{33} = 2 \): \[ \begin{vmatrix} 3 & 5 \\ 2 & -3 \end{vmatrix} = (3)(-3) - (5)(2) = -9 - 10 = -19 \] ### Step 3: Calculate the Cofactor Matrix Now we apply the checkerboard pattern of signs to the minors: \[ C = \begin{pmatrix} -7 & -3 & 5 \\ -3 & -1 & 2 \\ 26 & 11 & -19 \end{pmatrix} \] ### Step 4: Transpose the Cofactor Matrix to get the Adjugate The adjugate of matrix \( A \) is the transpose of the cofactor matrix: \[ \text{adj}(A) = C^T = \begin{pmatrix} -7 & -3 & 26 \\ -3 & -1 & 11 \\ 5 & 2 & -19 \end{pmatrix} \] ### Step 5: Calculate the Inverse of Matrix A The inverse of matrix \( A \) is given by: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Substituting the values we found: \[ A^{-1} = \frac{1}{29} \begin{pmatrix} -7 & -3 & 26 \\ -3 & -1 & 11 \\ 5 & 2 & -19 \end{pmatrix} \] Thus, the inverse of the matrix \( A \) is: \[ A^{-1} = \begin{pmatrix} -\frac{7}{29} & -\frac{3}{29} & \frac{26}{29} \\ -\frac{3}{29} & -\frac{1}{29} & \frac{11}{29} \\ \frac{5}{29} & \frac{2}{29} & -\frac{19}{29} \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ML KHANNA|Exercise SELF ASSESSMENT TEST|13 Videos
  • MATRICES

    ML KHANNA|Exercise COMPREHENSION|3 Videos
  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (TRUE AND FALSE)|9 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise MISCELANEOUS EXERCISE (COMPREHENSION)|3 Videos

Similar Questions

Explore conceptually related problems

The inverse of [(1,2),(2,3)] is

The inverse of [(1,2,4),(3,-19,7),(2,4,8)] is

Find the inverse of matrix B=[{:(3,1,5),(2,7,8),(1,2,5):}] by using adjoint method.

Find the inverse of matrix [{:(2,5),(-3,1):}]

Find the inverse of {:((3,2,6),(1,1,2),(2,2,5)):} by the adjoint method .

The inverse of the matrix [(2,3),(-4,7)] is (A) [(-2,-3),(4,-7)] (B) 1/26 [(7,-3),(4,2)] (C) [(7,4),(-3,2)] (D) [(7,-3),(4,2)]

Find the inverse of the matrix [{:(-1,1,2),(1,2,3),(3,1,1):}]

By using elementary transformations, find the inverse of : A=[(3,1),(5,2)] .

ML KHANNA-MATRICES-PROBLEM SET(1) (FILL IN THE BLANKS)
  1. Is it possible to define the matrix A + B when a. A has 3 rows and B...

    Text Solution

    |

  2. If 2X-Y=[(3,-3,0),(3,3,2)] and 2Y+X=[(4,1,5),(-1,4,-4)], then X=………………...

    Text Solution

    |

  3. If [(4),(1),(3)]A=[(-4,8,4),(-1,2,1),(-3,6,3)] then A=……….

    Text Solution

    |

  4. If A be any mxxn matrix and both AB and BA are defined then B should b...

    Text Solution

    |

  5. If A=[(1,0),(0,1)] then 7A^(3)+4A^(2)-11A=………………..

    Text Solution

    |

  6. If A=[(2,0,0),(0,2,0),(0,0,2)] then A^(2)=…………..

    Text Solution

    |

  7. If A=[(1,2,2),(2,1,2),(2,2,1)] then A^(2)-4A-5I=………….

    Text Solution

    |

  8. If A=[(1,0),(0,0)],B=[(0,1),(0 ,0)] then AB=………….

    Text Solution

    |

  9. If A=[(2,3,1),(3,1,5)],B=[(1,2,-1),(0,-1,3)] then 2A-3B=………….

    Text Solution

    |

  10. If A=[(9,1),(4,3)],B=[(1,5),(6,11)] and 3A+5B+2C=0 then C=………….

    Text Solution

    |

  11. If A=[(2,-2,-4),(-1,3,4),(1,-2,x)] is an idempotent matrix, then x=………...

    Text Solution

    |

  12. If A=[(2,1),(1,3)],B=[(3,2,0),(1,0,4)], then AB=…………..

    Text Solution

    |

  13. If A=[(1,3,0),(-1,2,1),(0,0,2)],B=[(2,3,4),(1,2,3),(-1,1,2)] then AB=…...

    Text Solution

    |

  14. If A=[(2,3,4),(1,2,3),(-1,1,2)],B=[(1,3,0),(-1,2,1),(0,0,2)], then AB+...

    Text Solution

    |

  15. If A=[(0,1,1),(1,2,0),(4,-1,3)] then Adj. A=……….

    Text Solution

    |

  16. The inverset of A=[(-4,-3,-3),(1,0,1),(4,4,3)] is ………

    Text Solution

    |

  17. If A=[(cos theta, - sin theta, 0),(sin theta, cos theta, 0),(0,0,1)] t...

    Text Solution

    |

  18. If A=[(1,2,3),(0,1,2),(0,0,1)] then A^(-1)=………..

    Text Solution

    |

  19. The inverse of [(3,5,7),(2,-3,1),(1,1,2)] is ……………

    Text Solution

    |