Home
Class 12
MATHS
Let M and N be two even order non sing...

Let M and N be two even order non singular skew symmetric matrices than MN=NM. If `P^(T)` denotes the transpose of P, then `M^(2)N^(2)(M^(T)N)^(-1)(MN^(-1))^(T)` is equal to

A

`M^(2)`

B

`-N^(2)`

C

`-M^(2)`

D

`MN`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to simplify the expression \( M^2 N^2 (M^T N)^{-1} (M N^{-1})^T \). ### Step-by-step Solution: 1. **Start with the given expression:** \[ M^2 N^2 (M^T N)^{-1} (M N^{-1})^T \] 2. **Use the property of transpose:** The transpose of a product of matrices is the product of their transposes in reverse order. Thus, \[ (M N^{-1})^T = N^{-T} M^T \] Since \( N \) is skew-symmetric, we have \( N^T = -N \), which implies \( N^{-T} = -N^{-1} \). Therefore, \[ (M N^{-1})^T = -N^{-1} M^T \] 3. **Substituting back into the expression:** The expression now becomes: \[ M^2 N^2 (M^T N)^{-1} (-N^{-1} M^T) \] 4. **Factor out the negative sign:** This gives us: \[ -M^2 N^2 (M^T N)^{-1} N^{-1} M^T \] 5. **Simplify \( (M^T N)^{-1} \):** Using the property of inverses, we can express: \[ (M^T N)^{-1} = N^{-1} (M^T)^{-1} \] Since \( M \) is skew-symmetric, \( (M^T)^{-1} = -M^{-1} \). Thus, \[ (M^T N)^{-1} = N^{-1} (-M^{-1}) = -N^{-1} M^{-1} \] 6. **Substituting this back:** Now substituting this into our expression: \[ -M^2 N^2 (-N^{-1} M^{-1}) N^{-1} M^T \] This simplifies to: \[ M^2 N^2 N^{-1} M^{-1} M^T \] 7. **Combine terms:** Since \( N^2 N^{-1} = N \): \[ M^2 N M^{-1} M^T \] 8. **Using the skew-symmetric property:** Recall that \( M^T = -M \): \[ M^2 N (-M^{-1}) = -M^2 N M^{-1} \] 9. **Final simplification:** We have: \[ -M^2 N M^{-1} \] 10. **Since \( M \) and \( N \) commute:** We can replace \( M^2 N M^{-1} \) with \( M N \) (because \( MN = NM \)): \[ -M N \] ### Final Answer: Thus, the final result is: \[ -MN \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ML KHANNA|Exercise COMPREHENSION|3 Videos
  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (FILL IN THE BLANKS)|19 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise MISCELANEOUS EXERCISE (COMPREHENSION)|3 Videos

Similar Questions

Explore conceptually related problems

Let MandN be two 3xx3 non singular skew- symmetric matrices such that MN=NM* If P^(T) denote the transpose of P, then M^(2)N^(2)(M^(T)N)^(-1)(MN^(-1))^(T) is equal to M^(2) b.-N^(2) c.-M^(2) d.MN

Let A and B be two 2times2 non singular skew symmetric matrices such thatAB=BA. If P^(T) ,denotes transpose of P then (B^(2)A^(2))^(2)((B^(T)A)^(-1))^(2)((BA^(-1))^(T))^(2) is equal to

If A=[[2,3],[4,5]] , prove that A-A^T is skew symmetric matrix, where A^T denotes the transpose of A.

If A=[[3,4],[5,1]] , show that A-A^T is a skew symmetric matrix, where A^T denotes the transpose of matrix A

Let A be a non - singular symmetric matrix of order 3. If A^(T)=A^(2)-I , then (A-I)^(-1) is equal to

If A a non singular matrix an A^T denotes the transpose of A then (A) |A A^T|!=|A^2| (B) |A^T A|!=|A^T|^2 (C) |A|+|A^T|!=0 (D) |A|!=|A^T|

Let P be a non - singular matrix such that I+P+P^(2)+…….P^(n)=O (where O denotes the null matrix), then P^(-1) is

If A=[[3m,-4],[1,-1]] , show that (A-A^T) is skew symmetric matrix, where A^T is the transpose of matrix A.

Let M and N are two non singular matrices of order 3 with real entries such that (adjM)=2N and (adjN)=M . If MN=lambdaI , then the value the values of lambda is equal to (where, (adj X) represents the adjoint matrix of matrix X and I represents an identity matrix)