Home
Class 12
MATHS
Let k be a positive real number and let ...

Let k be a positive real number and let
`A=[(2k-1,2sqrt(k),2sqrt(k)),(2sqrt(k),1,-2k),(-2sqrt(k),2k,-1)]`
`b=[(0,2k-1,sqrt(k)),(1-2k,0,0sqrt(k)),(-sqrt(k),-2sqrt(k),0)]`
If det(Adj(A))+det(Adj(B))`=10^(6)` then [k] is equal to

A

4

B

6

C

0

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( k \) given the matrices \( A \) and \( B \) and the condition that \( \text{det(Adj(A))} + \text{det(Adj(B))} = 10^6 \). ### Step 1: Calculate the determinant of matrix \( A \) The matrix \( A \) is given by: \[ A = \begin{pmatrix} 2k - 1 & 2\sqrt{k} & 2\sqrt{k} \\ 2\sqrt{k} & 1 & -2k \\ -2\sqrt{k} & 2k & -1 \end{pmatrix} \] To find \( \text{det(A)} \), we can use the formula for the determinant of a \( 3 \times 3 \) matrix: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] Where \( a, b, c, d, e, f, g, h, i \) are the elements of the matrix \( A \). Calculating the determinant step-by-step: 1. \( a = 2k - 1 \), \( b = 2\sqrt{k} \), \( c = 2\sqrt{k} \) 2. \( d = 2\sqrt{k} \), \( e = 1 \), \( f = -2k \) 3. \( g = -2\sqrt{k} \), \( h = 2k \), \( i = -1 \) Now substituting into the determinant formula: \[ \text{det}(A) = (2k - 1)((1)(-1) - (-2k)(2k)) - (2\sqrt{k})((2\sqrt{k})(-1) - (-2k)(-2\sqrt{k})) + (2\sqrt{k})((2\sqrt{k})(2k) - (1)(-2\sqrt{k})) \] Calculating each term: 1. First term: \( (2k - 1)(-1 + 4k^2) = (2k - 1)(4k^2 - 1) \) 2. Second term: \( -2\sqrt{k}(-2\sqrt{k} + 4k) = 2\sqrt{k}(2\sqrt{k} - 4k) \) 3. Third term: \( 2\sqrt{k}(4k\sqrt{k} + 2\sqrt{k}) = 2\sqrt{k}(6k\sqrt{k}) = 12k^2 \) Combining these terms gives us: \[ \text{det}(A) = (2k - 1)(4k^2 - 1) + 2\sqrt{k}(2\sqrt{k} - 4k) + 12k^2 \] ### Step 2: Calculate the determinant of matrix \( B \) The matrix \( B \) is given by: \[ B = \begin{pmatrix} 0 & 2k - 1 & \sqrt{k} \\ 1 - 2k & 0 & 0 \\ -\sqrt{k} & -2\sqrt{k} & 0 \end{pmatrix} \] Since the first column has a zero, we can use the determinant property that if a column (or row) is all zeros, the determinant is zero. Thus: \[ \text{det}(B) = 0 \] ### Step 3: Calculate the determinants of the adjoints The determinant of the adjoint of a matrix is given by: \[ \text{det(Adj(A))} = \text{det(A)}^{n-1} \] Where \( n \) is the order of the matrix. For a \( 3 \times 3 \) matrix, \( n = 3 \), so: \[ \text{det(Adj(A))} = \text{det(A)}^{2} \] And since \( \text{det(B)} = 0 \): \[ \text{det(Adj(B))} = 0 \] ### Step 4: Set up the equation Now we can substitute these into the given equation: \[ \text{det(Adj(A))} + \text{det(Adj(B))} = 10^6 \] This simplifies to: \[ \text{det(A)}^{2} + 0 = 10^6 \] Thus: \[ \text{det(A)}^{2} = 10^6 \] Taking the square root gives: \[ \text{det(A)} = 10^3 = 1000 \] ### Step 5: Solve for \( k \) Now we need to solve \( \text{det(A)} = 1000 \). We previously derived the expression for \( \text{det(A)} \). We set it equal to 1000 and solve for \( k \): \[ (2k + 1)^3 = 1000 \] Taking the cube root: \[ 2k + 1 = 10 \] Thus: \[ 2k = 9 \implies k = \frac{9}{2} = 4.5 \] ### Final Answer The value of \( k \) is: \[ \boxed{4.5} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ML KHANNA|Exercise COMPREHENSION|3 Videos
  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (FILL IN THE BLANKS)|19 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise MISCELANEOUS EXERCISE (COMPREHENSION)|3 Videos

Similar Questions

Explore conceptually related problems

Let K be a positive real number and A=[(2k-1, 2sqrtk, 2sqrtk),(2sqrtk, 1,-2k),(-2sqrtk,2k,-1)] and [(0,2k-1, sqrtk),(1-2k, 0,2),(-sqrtk, -2sqrtk,0)] If det (adjA)+det(adjB)= 10^6 , then [k] is equal to

Let K be a positive real number and A=[2k-1 2sqrt(k)2sqrt(k)2sqrt(k)1-2k-2sqrt(k)2k-1]a n dB=[0 2k-1sqrt(k)1-2k0 2-sqrt(k)-2sqrt(k)0] . If det (a d jA)+det(a d jB)=10^6,t h e n[k] is equal to. [Note: a d jM denotes the adjoint of a square matix M and [k] denotes the largest integer less than or equal to K ].

log_sqrt(k) (sqrt(k sqrt(k sqrt(k sqrt(k)))))

If (6)/(2sqrt(3)-sqrt(5))=(12sqrt(3)+6sqrt(5))/(k), then k=

sum_(k=1)^(oo)(1)/(k sqrt(k+2)+(k+2)sqrt(k))=(2+sqrt(2))/(a) then

log_(ksqrt(k)) (sqrt(k sqrt(k sqrt(k sqrt(k))))) (a) (5/8) (b) (15/16) (c) (5/4)

If log (sqrt(2)+sqrt(3))=cosh^(-1)k then k=