Home
Class 12
MATHS
If |{:(x(1),y(1),1),(x(2),y(2),1),(x(3),...

If `|{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|=|{:(a_(1),b_(1),1),(a_(2),b_(2),1),(a_(3),b_(3),1):}|` , then the two triangles with vertices `(x_(1),y_(1))`, `(x_(2),y_(2))`, `(x_(3),y_(3))` and `(a_(1),b_(1))`, `(a_(2),b_(2))` ,`(a_(3),b_(3))` must be congruent.

Text Solution

Verified by Experts

The correct Answer is:
F
Promotional Banner

Topper's Solved these Questions

  • RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

    ML KHANNA|Exercise PROBLEM SET(2)(fill in the blanks)|2 Videos
  • RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

    ML KHANNA|Exercise PROBLEM SET(3)(MULTIPLE CHOICE QUESTIONS)|40 Videos
  • RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

    ML KHANNA|Exercise PROBLEM SET(2)(MULTIPLE CHOICE QUESTIONS)|136 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Self Assessment Test (Multiple Choise Questions)|34 Videos
  • SELF ASSESSMENT TEST

    ML KHANNA|Exercise OBJECTIVE MATHEMATICS |16 Videos

Similar Questions

Explore conceptually related problems

|(x_1,y_1,1),(x_2,y_2,1),(x_3,y_3,1)|=|(a_1,b_1,1),(a_2,b_2,1),(a_3,b_3,1)| then the two triangles with vertices (x_(1), y_(1)), (x_(2), y_(2)), (x_(3), y_(3)) and (a_(1), b_(1)), (a_(2), b_(2)), (a_(3), b_(3)) are

STATEMENT-1: If three points (x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3)) are collinear, then |{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|=0 STATEMENT-2: If |{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|=0 then the points (x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3)) will be collinear. STATEMENT-3: If lines a_(1)x+b_(1)y+c_(1)=0,a_(2)=0and a_(3)x+b_(3)y+c_(3)=0 are concurrent then |{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=0

if quad /_=[[a_(1),b_(1),c_(1)a_(2),b_(2),c_(2)a_(3),b_(3),c_(3)]]

Show that |[a_(1),b_(1),-c_(1)],[-a_(2),-b_(2),c_(2)],[a_(3),b_(3),-c_(3)]|=|[a_(1),b_(1),c_(1)],[a_(2),b_(2),c_(2)],[a_(3),b_(3),c_(3)]|

if Delta=det[[a_(1),b_(1),c_(1)a_(2),b_(2),c_(2)a_(3),b_(3),c_(3)]]

If, in D={:[(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3))]:}, the co-factor of a_(r)" is "A_(r), then , c_(1)A_(1)+c_(2)A_(2)+c_(3)A_(3)=

If (b_(2)-b_(1))(b_(3)-b_(1))+(a_(2)-a_(1))(a_(3)-a_(1))=0 then plove that the circumcenter of the triangle having vertices (a_(1),b_(1)),(a_(2),b_(2)) and (a_(3),b_(3)) is ((a_(2+a_(3)))/(2),(b_(2+)b_(3))/(2))

If the lines a_(1)x+b_(1)y+1=0,a_(2)x+b_(2)y+1=0 and a_(3)x+b_(3)y+1=0 are concurren ow that the points (a_(1),b_(1)),(a_(2),b_(2)) and (a_(3),b_(3)) are collinear

Show that if x_(1),x_(2),x_(3) ne 0 |{:(x_(1) +a_(1)b_(1),,a_(1)b_(2),,a_(1)b_(3)),(a_(2)b_(1),,x_(2)+a_(2)b_(2),,a_(2)b_(3)),(a_(3)b_(1),,a_(3)b_(2),,x_(3)+a_(3)b_(3)):}| =x_(1)x_(2)x_(3) (1+(a_(1)b_(1))/(x_(1))+(a_(2)b_(2))/(x_(2))+(a_(3)b_(3))/(x_(3)))