Home
Class 12
MATHS
The vertices of a triangle are [at(1)t(...

The vertices of a triangle are `[at_(1)t_(2),a(t_(1)+t_(2))],[at_(2),a(t_(2)+t_(3))]` and `[at_(3)t_(1),a(t_(3)+t_(1))]`. The co ordinates of the orthocentre of the triangle are…….

Text Solution

AI Generated Solution

The correct Answer is:
To find the coordinates of the orthocenter of the triangle with vertices given by the coordinates \((at_1t_2, a(t_1 + t_2))\), \((at_2, a(t_2 + t_3))\), and \((at_3t_1, a(t_3 + t_1))\), we will follow these steps: ### Step 1: Identify the vertices of the triangle The vertices of the triangle are: - \( A(at_1t_2, a(t_1 + t_2)) \) - \( B(at_2, a(t_2 + t_3)) \) - \( C(at_3t_1, a(t_3 + t_1)) \) ### Step 2: Calculate the slopes of the sides 1. **Slope of side BC**: \[ m_{BC} = \frac{a(t_3 + t_1) - a(t_2 + t_3)}{at_3t_1 - at_2} = \frac{a(t_1 - t_2)}{a(t_3t_1 - t_2)} \] Simplifying gives: \[ m_{BC} = \frac{t_1 - t_2}{t_3t_1 - t_2} \] 2. **Slope of side AC**: \[ m_{AC} = \frac{a(t_3 + t_1) - a(t_1 + t_2)}{at_3t_1 - at_1t_2} = \frac{a(t_3 - t_2)}{a(t_3t_1 - t_1t_2)} = \frac{t_3 - t_2}{t_3t_1 - t_1t_2} \] 3. **Slope of side AB**: \[ m_{AB} = \frac{a(t_2 + t_3) - a(t_1 + t_2)}{at_2 - at_1t_2} = \frac{a(t_3 - t_1)}{a(t_2 - t_1t_2)} = \frac{t_3 - t_1}{t_2 - t_1t_2} \] ### Step 3: Find the equations of the altitudes 1. **Altitude from A to BC**: The slope of the altitude from A is the negative reciprocal of \(m_{BC}\): \[ m_{AD} = -\frac{t_3t_1 - t_2}{t_1 - t_2} \] Using point-slope form, the equation is: \[ y - a(t_1 + t_2) = -\frac{t_3t_1 - t_2}{t_1 - t_2}(x - at_1t_2) \] 2. **Altitude from B to AC**: The slope of the altitude from B is the negative reciprocal of \(m_{AC}\): \[ m_{BE} = -\frac{t_3t_1 - t_1t_2}{t_3 - t_2} \] The equation is: \[ y - a(t_2 + t_3) = -\frac{t_3t_1 - t_1t_2}{t_3 - t_2}(x - at_2) \] ### Step 4: Solve the equations of the altitudes To find the orthocenter, we need to solve the two equations obtained from the altitudes. 1. Substitute the \(y\) from one altitude equation into the other. 2. Solve for \(x\). 3. Substitute \(x\) back into one of the altitude equations to find \(y\). ### Step 5: Final coordinates of the orthocenter After solving the equations, we find: \[ x = -a \] Substituting \(x = -a\) into the altitude equation gives: \[ y = -a(t_1 + t_2 + t_3 + t_1t_2t_3) \] Thus, the coordinates of the orthocenter are: \[ \text{Orthocenter} = (-a, -a(t_1 + t_2 + t_3 + t_1t_2t_3)) \]
Promotional Banner

Topper's Solved these Questions

  • RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

    ML KHANNA|Exercise PROBLEM SET(5)(MULTIPLE CHOICE QUESTIONS)|18 Videos
  • RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

    ML KHANNA|Exercise PROBLEM SET(5)(TRUE AND FALSE)|1 Videos
  • RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

    ML KHANNA|Exercise PROBLEM SET(4)(TRUE AND FALSE)|4 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Self Assessment Test (Multiple Choise Questions)|34 Videos
  • SELF ASSESSMENT TEST

    ML KHANNA|Exercise OBJECTIVE MATHEMATICS |16 Videos

Similar Questions

Explore conceptually related problems

The vertices of a triangle are [at_(1)t_(2),a(t_(1)+t_(2))] , [at_(2)t_(3),a(t_(2)+t_(3))] , [at_(3)t_(1),a(t_(3)+t_(1))] . Find the orthocentre of the triangle.

The vertices of a triangle are [a t_1t_2,a(t_1 +t_2)], [a t_2t_3,a(t_2 +t_3)], [a t_3t_1,a(t_3 +t_1)] Then the orthocenter of the triangle is (a) (-a, a(t_1+t_2+t_3)-at_1t_2t_3) (b) (-a, a(t_1+t_2+t_3)+at_1t_2t_3) (c) (a, a(t_1+t_2+t_3)+at_1t_2t_3) (d) (a, a(t_1+t_2+t_3)-at_1t_2t_3)

If O is the orthocentre of triangle ABC whose vertices are at A(at_(1)^(2),2at_(1), B (at_(2)^(2),2at_(2)) and C (at_(3)^(2), 2at_(3)) then the coordinates of the orthocentreof Delta O'BC are

Find the area of that triangle whose vertices are (at_(1)^(2),2at_(1)),(at_(2)^(2),2at_(2))and(at_(3)^(2),2at_(3)).

Find the are of triangle whose vertex are: (at_(1),(a)/(t_(1)))(at_(2),(a)/(t_(2)))(at_(3),(a)/(t_(3)))

Find the coordinates o the vertices of a triangle,the equations of whose sides are: y(t_(1)+t_(2))=2x+2at_(1)at_(2),y(t_(2)+t_(3))=2x+2at_(2)t_(3) and ,y(t_(3)+t_(1))=2x+2at_(1)t_(3)

Calculate a, T_(1), T_(2), T_(1)' & T_(2)' .

Prove that the area of the triangle whose vertices are : (at_(1)^(2),2at_(1)) , (at_(2)^(2),2at_(2)) , (at_(3)^(2),2at_(3)) is a^(2)(t_(1)-t_(2))(t_(2)-t_(3))(t_(3)-t_(1)) .