Home
Class 12
MATHS
P ,Q , and R are the feet of the normals...

`P ,Q ,` and `R` are the feet of the normals drawn to a parabola `(y-3)^2=8(x-2)` . A circle cuts the above parabola at points `P ,Q ,R ,a n dS` . Then this circle always passes through the point. `(2,3)` (b) `(3,2)` (c) `(0,3)` (d) `(2,0)`

A

(2,3)

B

(3,2)

C

(0,3)

D

(2,0)

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • THE PARABOLA

    ML KHANNA|Exercise Problem Set (3) (TRUE AND FALSE)|4 Videos
  • THE PARABOLA

    ML KHANNA|Exercise Problem Set (3) (FILL IN THE BLANKS)|5 Videos
  • THE PARABOLA

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS)|5 Videos
  • THE HYPERBOLA

    ML KHANNA|Exercise SELF ASSESSMENT TEST |4 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Self Assessment Test|27 Videos

Similar Questions

Explore conceptually related problems

P, Q, and R are the feet of the normals drawn to a parabola ( y−3 ) ^2 =8( x−2 ) . A circle cuts the above parabola at points P, Q, R, and S . Then this circle always passes through the point. (a) ( 2, 3 ) (b) ( 3, 2 ) (c) ( 0, 3 ) (d) ( 2, 0 )

Find the centre and radius of the circle passing through the points P (-7,4) ,Q(0,3) and R (-4,5)

If the normal to the parabola y^(2)=12x at the point P(3,6) meets the parabola again at the point Q,then equation of the circle having PQ as a diameter is

Find the standard equation of the circle passing through the points P(3, 8) , Q(9 ,6) and R(13, -2) .

The algebraic sum of the ordinates of the feet of 3 normals drawn to the parabola y^(2)=4ax from a given point is 0.

Find the coordinates of centre of the circle passing through the points P(6,-6),Q (3,-7) and R(3,3)

From the point (3 0) 3- normals are drawn to the parabola y^2 = 4x . Feet of these normal are P ,Q ,R then area of triangle PQR is

If the normal at P(18, 12) to the parabola y^(2)=8x cuts it again at Q, then the equation of the normal at point Q on the parabola y^(2)=8x is

ML KHANNA-THE PARABOLA -Problem Set (3) (MULTIPLE CHOICE QUESTIONS)
  1. If the normals at two points P and Q of a parabola y^2 = 4ax intersect...

    Text Solution

    |

  2. If the point (at^2,2at) be the extremity of a focal chord of parabola ...

    Text Solution

    |

  3. A triangle ABC of area Delta is inscribed in the parabola y^2 = 4ax s...

    Text Solution

    |

  4. The locus of the middle points of the focal chord of the parabola y^(2...

    Text Solution

    |

  5. The locus of the poles of focal chords of the parabola y^2 = 4ax is

    Text Solution

    |

  6. A focal chord of parabola y^(2)=4x .is inclined at an angle of (pi)/(4...

    Text Solution

    |

  7. The length of the subnormal to the parabola y^(2)=4ax at any point is ...

    Text Solution

    |

  8. Find the locus of the mid-points of the chords of the parabola y^2=4ax...

    Text Solution

    |

  9. The normals at three points P,Q,R of the parabola y^2=4ax meet in (h,k...

    Text Solution

    |

  10. If the normals any point to the parabola x^(2)=4y cuts the line y = 2 ...

    Text Solution

    |

  11. The locus of the mid-points of the portion of the normal to the parabo...

    Text Solution

    |

  12. Through the vertex O of a parabola y^2 = 4x chords OP and OQ are draw...

    Text Solution

    |

  13. Tangents are drawn from any point on the line x + 4a=0 to the parabola...

    Text Solution

    |

  14. A is a point on the parabola y^2 = 4ax The normal at A cuts the parabo...

    Text Solution

    |

  15. The length of the normal chord to the parabola y^2 = 4x which subtends...

    Text Solution

    |

  16. A variable chord PQ of the parabola y^2 = 4ax subtends a right angle ...

    Text Solution

    |

  17. The locus of point of intersection of two normals drawn to the parabol...

    Text Solution

    |

  18. P ,Q , and R are the feet of the normals drawn to a parabola (y-3)^2=8...

    Text Solution

    |

  19. If two different tangents of y^2 = 4x are the normals to the parabola...

    Text Solution

    |

  20. For y^2 = 4x, pormals at P, Q, Rare concurrent at a point (3,0), then...

    Text Solution

    |