Home
Class 12
MATHS
For the hyperbola 9x^(2)-16y^(2)-72x+96y...

For the hyperbola `9x^(2)-16y^(2)-72x+96y-144=0`.
(a) Foci …………. (b) Eccentricity ………….
(c ) L.R. ………….. (d) Directrices …………….

Text Solution

AI Generated Solution

The correct Answer is:
To solve the hyperbola equation \(9x^2 - 16y^2 - 72x + 96y - 144 = 0\) and find the foci, eccentricity, length of the latus rectum (L.R.), and directrices, we will follow these steps: ### Step 1: Rearranging the Equation We start with the equation: \[ 9x^2 - 16y^2 - 72x + 96y - 144 = 0 \] Rearranging gives: \[ 9x^2 - 72x - 16y^2 + 96y = 144 \] ### Step 2: Completing the Square Next, we complete the square for both \(x\) and \(y\). **For \(x\):** \[ 9(x^2 - 8x) = 9((x - 4)^2 - 16) = 9(x - 4)^2 - 144 \] **For \(y\):** \[ -16(y^2 - 6y) = -16((y - 3)^2 - 9) = -16(y - 3)^2 + 144 \] Substituting back into the equation: \[ 9(x - 4)^2 - 144 - 16(y - 3)^2 + 144 = 144 \] This simplifies to: \[ 9(x - 4)^2 - 16(y - 3)^2 = 144 \] ### Step 3: Dividing by 144 Divide the entire equation by 144 to get it into standard form: \[ \frac{(x - 4)^2}{16} - \frac{(y - 3)^2}{9} = 1 \] This is now in the standard form of a hyperbola: \[ \frac{(x - h)^2}{a^2} - \frac{(y - k)^2}{b^2} = 1 \] where \(h = 4\), \(k = 3\), \(a^2 = 16\) (thus \(a = 4\)), and \(b^2 = 9\) (thus \(b = 3\)). ### Step 4: Finding the Center The center of the hyperbola is at the point \((h, k) = (4, 3)\). ### Step 5: Finding the Foci The distance \(c\) from the center to the foci is given by: \[ c = \sqrt{a^2 + b^2} = \sqrt{16 + 9} = \sqrt{25} = 5 \] Thus, the foci are located at: \[ (4 \pm c, 3) = (4 \pm 5, 3) \Rightarrow (9, 3) \text{ and } (-1, 3) \] ### Step 6: Finding the Eccentricity The eccentricity \(e\) of the hyperbola is given by: \[ e = \frac{c}{a} = \frac{5}{4} \] ### Step 7: Finding the Length of the Latus Rectum (L.R.) The length of the latus rectum \(L\) is given by: \[ L = \frac{2b^2}{a} = \frac{2 \cdot 9}{4} = \frac{18}{4} = \frac{9}{2} \] ### Step 8: Finding the Directrices The equations of the directrices for a hyperbola are given by: \[ x = h \pm \frac{a^2}{c} \] Calculating: \[ \frac{a^2}{c} = \frac{16}{5} \] Thus, the directrices are: \[ x = 4 \pm \frac{16}{5} \Rightarrow x = 4 + \frac{16}{5} = \frac{36}{5} \text{ and } x = 4 - \frac{16}{5} = \frac{-4}{5} \] ### Summary of Results (a) Foci: \((9, 3)\) and \((-1, 3)\) (b) Eccentricity: \(\frac{5}{4}\) (c) Length of L.R.: \(\frac{9}{2}\) (d) Directrices: \(x = \frac{36}{5}\) and \(x = \frac{-4}{5}\)
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • THE HYPERBOLA

    ML KHANNA|Exercise PROBLEM SET (2) (MCQ) |20 Videos
  • THE HYPERBOLA

    ML KHANNA|Exercise PROBLEM SET (2) (TRUE AND FALSE)|2 Videos
  • THE HYPERBOLA

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE)|1 Videos
  • THE ELLIPSE

    ML KHANNA|Exercise SELF ASSESSMENT TEST|9 Videos
  • THE PARABOLA

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Assertion/ Reason)|1 Videos

Similar Questions

Explore conceptually related problems

The foci of the hyperbola 9x^(2)-16y^(2)+18x+32y-151=0 are

The centre of the hyperbola 9x^(2)-36x-16y^(2)+96y-252=0 , are

Knowledge Check

  • The vertices of the hyperbola 9x^(2)-16y^(2)-36x+96y-252=0 are

    A
    `(6, 3), (-2, 3)`
    B
    `(6, 3), (-6, 3)`
    C
    `(-6, 3), (-6, -3)`
    D
    none
  • The vertices of the hyperbola 9x^(2)-16y^(2)-36x+96y-252=0 are

    A
    `(6,3)` and `(-6,3)`
    B
    `(6,3)` and `(-2,3)`
    C
    `(-6,3)` and `(-6,-3)`
    D
    None of these
  • The centre of the hyperbola 9x^(2)-36x-16y^(2)+96y-252=0 is

    A
    `(2, 3)`
    B
    `(-2, -3)`
    C
    `(-2, 3)`
    D
    `(2, -3)`
  • Similar Questions

    Explore conceptually related problems

    Find the vertices of the hyperbola 9x^(2)-16y^(2)-36x+96y-252=0

    Consider the hyperbola 9x^(2)-16y^(2)+72x-32y-16=0. Find the following: (a)Centre,(b)eccentricity,(c) focii, (d)equation of directrix,(e) length of the latus rectum,(f)equation ofauilary circle,(g) equation of director circle

    The eccentricity of the hyperbola 9x^(2)-16y^(2)+72x-32y-16=0 , is

    Find the eccentricity for the hyperbola 9x^(2) - 16y^(2) = 144

    The eccentricity of the hyperbola 9x^2-16y^2-18x-64y-199=0 is: