Home
Class 12
MATHS
A circle cuts the rectangular hyperbola ...

A circle cuts the rectangular hyperbola `xy=1` in the points `(x_(r),y_(r)),r=1,2,3,4,`
then `x_(1)x_(2)x_(3)x_(4)=y_(1)y_(2)y_(3)y_(4)=1`.
True or False?

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the statement "A circle cuts the rectangular hyperbola \(xy=1\) in the points \((x_{r},y_{r})\) for \(r=1,2,3,4\), then \(x_{1}x_{2}x_{3}x_{4}=y_{1}y_{2}y_{3}y_{4}=1\)" is true or false, we can follow these steps: ### Step 1: Define the Circle and Hyperbola Let’s consider a circle given by the equation: \[ x^2 + y^2 = a^2 \] and the rectangular hyperbola given by: \[ xy = 1 \] ### Step 2: Parameterize the Hyperbola We can express points on the hyperbola using a parameter \(t\): \[ (x, y) = \left(t, \frac{1}{t}\right) \] where \(t \neq 0\). ### Step 3: Substitute into the Circle's Equation Substituting the parameterization into the circle’s equation gives: \[ t^2 + \left(\frac{1}{t}\right)^2 = a^2 \] This simplifies to: \[ t^2 + \frac{1}{t^2} = a^2 \] ### Step 4: Clear the Fraction Multiplying through by \(t^2\) results in: \[ t^4 - a^2 t^2 + 1 = 0 \] This is a quadratic equation in terms of \(t^2\). ### Step 5: Solve the Quadratic Equation Let \(u = t^2\). The equation becomes: \[ u^2 - a^2 u + 1 = 0 \] Using the quadratic formula, the roots are: \[ u = \frac{a^2 \pm \sqrt{a^4 - 4}}{2} \] Let the roots be \(u_1, u_2, u_3, u_4\) corresponding to \(t_1^2, t_2^2, t_3^2, t_4^2\). ### Step 6: Find the Product of the Roots From Vieta's formulas, the product of the roots \(u_1 u_2 u_3 u_4\) of the equation \(u^2 - a^2 u + 1 = 0\) is given by: \[ u_1 u_2 u_3 u_4 = 1 \] This implies: \[ t_1^2 t_2^2 t_3^2 t_4^2 = 1 \] ### Step 7: Relate \(x_r\) and \(y_r\) to \(t_r\) Since \(x_r = t_r\) and \(y_r = \frac{1}{t_r}\), we have: \[ x_1 x_2 x_3 x_4 = t_1 t_2 t_3 t_4 \] and \[ y_1 y_2 y_3 y_4 = \frac{1}{t_1} \cdot \frac{1}{t_2} \cdot \frac{1}{t_3} \cdot \frac{1}{t_4} = \frac{1}{t_1 t_2 t_3 t_4} \] ### Step 8: Calculate the Products From the earlier step, we know: \[ t_1 t_2 t_3 t_4 = 1 \implies x_1 x_2 x_3 x_4 = 1 \] and \[ y_1 y_2 y_3 y_4 = \frac{1}{1} = 1 \] ### Conclusion Thus, we conclude that: \[ x_1 x_2 x_3 x_4 = y_1 y_2 y_3 y_4 = 1 \] The statement is **True**.
Promotional Banner

Topper's Solved these Questions

  • THE HYPERBOLA

    ML KHANNA|Exercise PROBLEM SET (3) (FILL IN THE BLANKS)|3 Videos
  • THE HYPERBOLA

    ML KHANNA|Exercise MISCELLANGEOUS EXERCISE (MATCHING ENTERIES) |1 Videos
  • THE HYPERBOLA

    ML KHANNA|Exercise PROBLEM SET (3) (MCQ)|8 Videos
  • THE ELLIPSE

    ML KHANNA|Exercise SELF ASSESSMENT TEST|9 Videos
  • THE PARABOLA

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Assertion/ Reason)|1 Videos

Similar Questions

Explore conceptually related problems

If the normals at (x_(i),y_(i)) i=1,2,3,4 to the rectangular hyperbola xy=2 meet at the point (3,4) then (A) x_(1)+x_(2)+x_(3)+x_(4)=3 (B) y_(1)+y_(2)+y_(3)+y_(4)=4 (C) y_(1)y_(2)y_(3)y_(4)=4 (D) x_(1)x_(2)x_(3)x_(4)=-4

If the circle " x^(2)+y^(2)=1 " cuts the rectangular hyperbola " xy=1 " in four points (x_(i),y_(i)),i=1,2,3,4 then which of the following is NOT correct 1) " x_(1)x_(1)x_(3),x_(4)=-1 ," 2) " y_(1)y_(2)y_(3)y_(4)=1 3) " x_(1)+x_(2)+x_(3)+x_(4)=0 ," 4) " y_(1)+y_(2)+y_(1)+y_(4)=0

If the normal at four points P_(i)(x_(i), (y_(i)) l, I = 1, 2, 3, 4 on the rectangular hyperbola xy = c^(2) meet at the point Q(h, k), prove that x_(1) + x_(2) + x_(3) + x_(4) = h, y_(1) + y_(2) + y_(3) + y_(4) = k x_(1)x_(2)x_(3)x_(4) =y_(1)y_(2)y_(3)y_(4) =-c^(4)

If the circle x^(2)+y^(2)=a^(2) intersects the hyperbola xy=c^(2) at four points P(x_(1),y_(1)),Q(x_(2),y_(2)),R(x_(3),y_(3)), and S(x_(4),y_(4)), then x_(1)+x_(2)+x_(3)+x_(4)=0y_(1)+y_(2)+y_(3)+y_(4)=0x_(1)x_(2)x_(3)x_(4)=C^(4)y_(1)y_(2)y_(3)y_(4)=C^(4)

If x_(1),x_(2),y_(1),y_(2)in R if ^(@)0

If the circle x^(2)+y^(2)=a^(2) intersects the hyperbola xy=c^(2) in four points P (x_(1) ,y_(1)) Q (x_(2), y_(2)) R (x_(3) ,y_(3)) S (x_(4) ,y_(4)) then 1) x_(1)+x_(2)+x_(3)+x_(4)=2c^(2) 2) y_(1)+y_(2)+y_(3)+y_(4)=0 3) x_(1)x_(2)x_(3)x_(4)=2c^(4) 4) y_(1)y_(2)y_(3)y_(4)=2c^(4)

The centre of the hyperbola 2xy+3x+4y+1=0 is

If the circle x^(2)+y^(2)=a^(2) intersects the hyperbola xy=c^(2) in four points P(x_(1),y_(1))Q(x_(2),y_(2)),R(x_(3),y_(3)),S(x_(4),y_(4)), then which of the following need not hold. (a) x_(1)+x_(2)+x_(3)+x_(4)=0 (b) x_(1)x_(2)x_(3)x_(4)=y_(1)y_(2)y_(3)y_(4)=c^(4) (c) y_(1)+y_(2)+y_(3)+y_(4)=0 (d) x_(1)+y_(2)+x_(3)+y_(4)=0