Home
Class 12
MATHS
2 ( sin^(6)A + cos^(6) A) - 3 ( sin^(4) ...

`2 ( sin^(6)A + cos^(6) A) - 3 ( sin^(4) A + cos^(4) A )` is

A

2

B

0

C

`-1`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(2 (\sin^6 A + \cos^6 A) - 3 (\sin^4 A + \cos^4 A)\), we will simplify it step by step. ### Step 1: Rewrite the expression We start with the expression: \[ 2 (\sin^6 A + \cos^6 A) - 3 (\sin^4 A + \cos^4 A) \] ### Step 2: Use the identity for \(a^3 + b^3\) Recall that \(a^3 + b^3 = (a + b)(a^2 - ab + b^2)\). We can apply this to \(\sin^6 A + \cos^6 A\): \[ \sin^6 A + \cos^6 A = (\sin^2 A)^3 + (\cos^2 A)^3 = (\sin^2 A + \cos^2 A)((\sin^2 A)^2 - \sin^2 A \cos^2 A + (\cos^2 A)^2) \] Since \(\sin^2 A + \cos^2 A = 1\), we have: \[ \sin^6 A + \cos^6 A = 1 \cdot ((\sin^2 A)^2 - \sin^2 A \cos^2 A + (\cos^2 A)^2) \] Now, \((\sin^2 A)^2 + (\cos^2 A)^2 = \sin^4 A + \cos^4 A\), so: \[ \sin^6 A + \cos^6 A = \sin^4 A + \cos^4 A - \sin^2 A \cos^2 A \] ### Step 3: Substitute back into the expression Substituting this back into our original expression gives: \[ 2(\sin^4 A + \cos^4 A - \sin^2 A \cos^2 A) - 3(\sin^4 A + \cos^4 A) \] ### Step 4: Distribute the terms Distributing the 2: \[ 2\sin^4 A + 2\cos^4 A - 2\sin^2 A \cos^2 A - 3\sin^4 A - 3\cos^4 A \] ### Step 5: Combine like terms Now, combine the terms: \[ (2\sin^4 A - 3\sin^4 A) + (2\cos^4 A - 3\cos^4 A) - 2\sin^2 A \cos^2 A \] This simplifies to: \[ -\sin^4 A - \cos^4 A - 2\sin^2 A \cos^2 A \] ### Step 6: Use the identity for \(\sin^4 A + \cos^4 A\) Recall that: \[ \sin^4 A + \cos^4 A = (\sin^2 A + \cos^2 A)^2 - 2\sin^2 A \cos^2 A = 1 - 2\sin^2 A \cos^2 A \] Substituting this into our expression gives: \[ -(1 - 2\sin^2 A \cos^2 A) - 2\sin^2 A \cos^2 A \] This simplifies to: \[ -1 + 2\sin^2 A \cos^2 A - 2\sin^2 A \cos^2 A = -1 \] ### Final Answer Thus, the final answer is: \[ \boxed{-1} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (1) TRUE AND FALSE|5 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (1) FILL IN THE BLANKS|2 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

Prove that 2 (sin ^ (6) A + cos ^ (6) A) -3 (sin ^ (4) A + cos ^ (4) A) + 1 = 0

Find the value of : 2 (sin^(6) x + cos^(6)x) - 3 (sin^(4) x + cos ^(4)x) + 2 .

sin ^ (6) A + cos ^ (6) A = 1-3sin ^ (2) A cos ^ (2) A

sin^(6)A + cos^(6)A + 3sin^(2)A.cos^(2)A=

Prove that 3 (sin x-cos x) ^ (4) +4 (sin ^ (6) x + cos ^ (6) x) +6 (sin x + cos x) ^ (2) = 13

Find the value of: 2("sin"^(6)x+cos^(6)x)-3("sin"^(4)x+cos^(4)x)+2 .

The value of 2(sin^6 theta+ cos^6 theta )-3 (sin^4 theta + cos^4 theta) is ……..

Show That 2(sin^(6)x+cos^(6)x)-3(sin^(4)x+cos^(4)x)+1=0