Home
Class 12
MATHS
The value of sin^(2)acos ^(2)a( sec^(2) ...

The value of `sin^(2)acos ^(2)a( sec^(2) a+ cosec^(2) a )` is

A

2

B

4

C

1

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sin^2 a \cos^2 a (\sec^2 a + \csc^2 a) \), we will break it down step by step. ### Step 1: Rewrite the expression We start with the expression: \[ \sin^2 a \cos^2 a (\sec^2 a + \csc^2 a) \] We know that: \[ \sec^2 a = \frac{1}{\cos^2 a} \quad \text{and} \quad \csc^2 a = \frac{1}{\sin^2 a} \] So we can rewrite the expression as: \[ \sin^2 a \cos^2 a \left( \frac{1}{\cos^2 a} + \frac{1}{\sin^2 a} \right) \] ### Step 2: Simplify the terms inside the parentheses Now, we simplify the terms inside the parentheses: \[ \frac{1}{\cos^2 a} + \frac{1}{\sin^2 a} = \frac{\sin^2 a + \cos^2 a}{\sin^2 a \cos^2 a} \] Using the Pythagorean identity \( \sin^2 a + \cos^2 a = 1 \), we can substitute: \[ \frac{1}{\sin^2 a \cos^2 a} \] ### Step 3: Substitute back into the expression Substituting this back into our expression gives: \[ \sin^2 a \cos^2 a \cdot \frac{1}{\sin^2 a \cos^2 a} \] ### Step 4: Cancel out terms Now we can cancel \( \sin^2 a \cos^2 a \): \[ 1 \] ### Final Answer Thus, the value of \( \sin^2 a \cos^2 a (\sec^2 a + \csc^2 a) \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (1) TRUE AND FALSE|5 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (1) FILL IN THE BLANKS|2 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

The value of sin^(2)theta cos^(2)theta(sec^(2)theta+cosec^(2)theta)-1 is

The value of tan^(2)∅+ cot^(2)∅− sec^(2)∅ cosec^(2)∅ is equal to: tan^(2)∅+ cot^(2)∅− sec^(2)∅ cosec^(2)∅ iका मान बराबर है :

The value of sin^2 theta cos^2 theta (sec^2 theta + cosec^2 theta ) is

The value of (sec^(2)θ /cosec^(2)θ) + (cosec^(2)θ /sec^(2)θ )-(sec^(2)θ + cosec^(2)θ) is : (sec^(2)θ /cosec^(2)θ) + (cosec^(2)θ /sec^(2)θ )-(sec^(2)θ + cosec^(2)θ) का मान बराबर है :

" (1) sec^(2)A+cosec^(2)A=sec^(2)A*cosec^(2)A

If tan a=2/sqrt13 , then the value of (cosec^2 a+2sec^2 a)/(cosec^2 a-3 sec^2 a) is : यदि tan a=2/sqrt13 ,है, तो (cosec^2 a+2sec^2 a)/(cosec^2 a-3 sec^2 a) का मान:

If three vectors (sec^(2)A) hati+hatj+hatk , hati+(sec^(2)B)hatj+hatk,hati+hatj+sec^(2)hatk are complnar, then the value of cosec^(2)A + cosec^(2)B+ cosec^(2)C is -

If cotθ = sqrt6 , then the value of is: (cosec^(2)θ + sec^(2)θ)/(cosec^(2)θ − sec^(2)θ) यदि cotθ = sqrt6 है तो (cosec^(2)θ + sec^(2)θ)/(cosec^(2)θ − sec^(2)θ) का मान हैः