Home
Class 12
MATHS
If x = a cos^(2) theta sin theta and y =...

If `x = a cos^(2) theta sin theta` and `y = a sin^(2) theta cos theta `, then `( x^(2) + y^(2))^(3)` is

A

`a^(2) x^(2) //y^(2)`

B

`a^(2) x^(2) y ^(2)`

C

`a^(2) ( x^(2) - y^(2))`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \((x^2 + y^2)^3\) given that \(x = a \cos^2 \theta \sin \theta\) and \(y = a \sin^2 \theta \cos \theta\). ### Step-by-Step Solution: 1. **Substitute the values of \(x\) and \(y\)**: \[ x^2 + y^2 = (a \cos^2 \theta \sin \theta)^2 + (a \sin^2 \theta \cos \theta)^2 \] 2. **Expand the squares**: \[ = a^2 \cos^4 \theta \sin^2 \theta + a^2 \sin^4 \theta \cos^2 \theta \] 3. **Factor out the common terms**: \[ = a^2 \cos^2 \theta \sin^2 \theta (\cos^2 \theta + \sin^2 \theta) \] 4. **Use the Pythagorean identity**: Since \(\cos^2 \theta + \sin^2 \theta = 1\): \[ = a^2 \cos^2 \theta \sin^2 \theta \cdot 1 \] \[ = a^2 \cos^2 \theta \sin^2 \theta \] 5. **Now, we need to cube this expression**: \[ (x^2 + y^2)^3 = (a^2 \cos^2 \theta \sin^2 \theta)^3 \] \[ = a^6 \cos^6 \theta \sin^6 \theta \] 6. **Final expression**: \[ = a^6 \cos^6 \theta \sin^6 \theta \] ### Final Answer: \[ (x^2 + y^2)^3 = a^6 \cos^6 \theta \sin^6 \theta \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (1) TRUE AND FALSE|5 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (1) FILL IN THE BLANKS|2 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

If x = a cos ^ (2) theta sin theta and y = a sin ^ (2) theta cos theta then ((x ^ (2) + y ^ (2)) ^ (3)) / (x ^ (2 ) and ^ (2)) =

If x=a cos theta-b sin theta and y=a sin theta+b cos theta then prove that :x^(2)+y^(2)=a^(2)+b^(2)

If x=a cos theta + b sin theta and y=a sin theta - b cos theta. then a ^(2) +b^(2) is equal to

If x= sin^(2)theta* cos theta and y=sin theta cos^(2)theta,"then" :

If 2y cos theta =x sin theta and 2x sec theta -y cosec theta =3, then x ^(2) +4y^(2)=

If x = a cos theta - b sin theta and y = a sin theta + b cos theta, prove that x^2 + y^2 = a^2 + b^2.

If x=a cos theta+b sin theta and y=a sin theta-b cos theta, then prove that y^(2)(d^(2)y)/(dx^(2))-x(dy)/(dx)+y=0

If x sin^(3) theta + y cos^(3) theta = sin theta cos theta and x sin theta = y cos theta , then the value of x^(2) + y^(2) is :

If x=2 cos theta- cos 2 theta and y=2 sin theta - sin 2 theta, then (dy)/(dx) =