Home
Class 12
MATHS
If 0le theta le pi and 81^(sin^(2) thet...

If `0le theta le pi ` and `81^(sin^(2) theta ) + 81^(cos^(2) theta ) = 30` then `theta ` is

A

`30^(@)`

B

`60^(@)`

C

`120^(@)`

D

`150^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 81^{\sin^2 \theta} + 81^{\cos^2 \theta} = 30 \) for \( \theta \) in the range \( 0 \leq \theta \leq \pi \), we can follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ 81^{\sin^2 \theta} + 81^{\cos^2 \theta} = 30 \] Since \( 81 = 3^4 \), we can rewrite the equation as: \[ (3^4)^{\sin^2 \theta} + (3^4)^{\cos^2 \theta} = 30 \] This simplifies to: \[ 3^{4\sin^2 \theta} + 3^{4\cos^2 \theta} = 30 \] ### Step 2: Substitute variables Let \( x = 3^{4\sin^2 \theta} \). Then, we can express \( 3^{4\cos^2 \theta} \) as: \[ 3^{4\cos^2 \theta} = 3^{4(1 - \sin^2 \theta)} = \frac{3^4}{x} = \frac{81}{x} \] Now, substitute this back into the equation: \[ x + \frac{81}{x} = 30 \] ### Step 3: Multiply through by \( x \) To eliminate the fraction, multiply through by \( x \): \[ x^2 + 81 = 30x \] Rearranging gives us a quadratic equation: \[ x^2 - 30x + 81 = 0 \] ### Step 4: Solve the quadratic equation We can use the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 1, b = -30, c = 81 \): \[ x = \frac{30 \pm \sqrt{(-30)^2 - 4 \cdot 1 \cdot 81}}{2 \cdot 1} \] Calculating the discriminant: \[ x = \frac{30 \pm \sqrt{900 - 324}}{2} = \frac{30 \pm \sqrt{576}}{2} = \frac{30 \pm 24}{2} \] This gives us two solutions: \[ x = \frac{54}{2} = 27 \quad \text{and} \quad x = \frac{6}{2} = 3 \] ### Step 5: Back substitute for \( \sin^2 \theta \) Now we have two cases for \( x \): 1. \( x = 27 \) 2. \( x = 3 \) #### Case 1: \( x = 27 \) \[ 3^{4\sin^2 \theta} = 27 \implies 3^{4\sin^2 \theta} = 3^3 \implies 4\sin^2 \theta = 3 \implies \sin^2 \theta = \frac{3}{4} \] Thus, \( \sin \theta = \frac{\sqrt{3}}{2} \), which gives: \[ \theta = 60^\circ \quad \text{or} \quad \theta = 120^\circ \] #### Case 2: \( x = 3 \) \[ 3^{4\sin^2 \theta} = 3 \implies 4\sin^2 \theta = 1 \implies \sin^2 \theta = \frac{1}{4} \] Thus, \( \sin \theta = \frac{1}{2} \), which gives: \[ \theta = 30^\circ \quad \text{or} \quad \theta = 150^\circ \] ### Final Solution The possible values for \( \theta \) are: \[ \theta = 30^\circ, 60^\circ, 120^\circ, 150^\circ \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (1) TRUE AND FALSE|5 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (1) FILL IN THE BLANKS|2 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

If 0<=theta<=pi and 81^(sin^(2)theta)+81^(cos^(2)theta)=30 is

int _(0) ^(pi) sin ^(2) theta cos theta d theta

For 0 le theta le pi/2 the maximum value of sin theta + cos theta is

If 0 le theta lt pi/2 and costheta + sqrt(3) sin theta =2 , then what is the value of theta ?

Solve sin^(2) theta-cos theta=1/4, 0 le theta le 2pi .