Home
Class 12
MATHS
If sin (a+b) =1, sin (a- b) = ( 1)/( 2) ...

If `sin (a+b) =1, sin (a- b) = ( 1)/( 2) , a, b in [ 0, pi //2]`, then `tan ( a+ 2 b ) tan ( 2 a + b) =`

A

1

B

2

C

`-1`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given equations: 1. **Given Equations:** - \( \sin(a + b) = 1 \) - \( \sin(a - b) = \frac{1}{2} \) 2. **Analyzing the First Equation:** - The sine function equals 1 at \( \frac{\pi}{2} \). Therefore, we can set: \[ a + b = \frac{\pi}{2} \quad \text{(Equation 1)} \] 3. **Analyzing the Second Equation:** - The sine function equals \( \frac{1}{2} \) at \( \frac{\pi}{6} \) (or 30 degrees). Thus, we have: \[ a - b = \frac{\pi}{6} \quad \text{(Equation 2)} \] 4. **Adding the Two Equations:** - Now, we add Equation 1 and Equation 2: \[ (a + b) + (a - b) = \frac{\pi}{2} + \frac{\pi}{6} \] - This simplifies to: \[ 2a = \frac{3\pi}{6} + \frac{\pi}{6} = \frac{4\pi}{6} = \frac{2\pi}{3} \] - Dividing by 2 gives: \[ a = \frac{\pi}{3} \quad \text{(or 60 degrees)} \] 5. **Substituting to Find \( b \):** - Now we substitute \( a \) back into Equation 1: \[ \frac{\pi}{3} + b = \frac{\pi}{2} \] - Rearranging gives: \[ b = \frac{\pi}{2} - \frac{\pi}{3} = \frac{3\pi}{6} - \frac{2\pi}{6} = \frac{\pi}{6} \quad \text{(or 30 degrees)} \] 6. **Finding \( \tan(a + 2b) \) and \( \tan(2a + b) \):** - Now we calculate \( a + 2b \): \[ a + 2b = \frac{\pi}{3} + 2 \times \frac{\pi}{6} = \frac{\pi}{3} + \frac{\pi}{3} = \frac{2\pi}{3} \] - Next, we calculate \( 2a + b \): \[ 2a + b = 2 \times \frac{\pi}{3} + \frac{\pi}{6} = \frac{2\pi}{3} + \frac{\pi}{6} = \frac{4\pi}{6} + \frac{\pi}{6} = \frac{5\pi}{6} \] 7. **Calculating \( \tan(a + 2b) \) and \( \tan(2a + b) \):** - We find: \[ \tan\left(\frac{2\pi}{3}\right) = -\tan\left(\frac{\pi}{3}\right) = -\sqrt{3} \] - And: \[ \tan\left(\frac{5\pi}{6}\right) = -\tan\left(\frac{\pi}{6}\right) = -\frac{1}{\sqrt{3}} \] 8. **Finding the Product:** - Now we calculate: \[ \tan(a + 2b) \tan(2a + b) = (-\sqrt{3}) \left(-\frac{1}{\sqrt{3}}\right) = 1 \] 9. **Final Answer:** - Therefore, the final answer is: \[ \tan(a + 2b) \tan(2a + b) = 1 \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (1) TRUE AND FALSE|5 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (1) FILL IN THE BLANKS|2 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

If sin(A + B) = 1 and 2 sin (A - B) = 1, where 0 lt A, B lt pi/2 then what is tan A:tan B equal to?

Let sin (A+B) = 1 and sin (A-B) = 1//2 where AB epsilon[0,(pi)/(2)] . What is the value of tan (A+2B). tan(2A+B)?

If sin (A+B) = 1 and sin (A-B) = 1/2 where AB epsilon[0,(pi)/(2)] . What is the value of B?

If tan A = (1 - cos B)/(sin B), then what is (2 tan A )/( 1 - tan ^(2) A ) equal to ?

[tan {(pi) / (4) + (1) / (2) sin ^ (- 1) ((a) / (b))} + tan {(pi) / (4) - (1) / ( 2) sin ^ (- 1) ((a) / (b))} ^ (- 1) where (0

If sin A=a cos B and cos A=b sin B then tan^(2)B =

(sin (4.1-2 beta) + (sin (4B-2A)) / (cos (4A-2B) + cos (4B-2A) = tan (A + B))

If A+B=(pi)/(2) and sin A+sin B=1 then sin2A is equal to