Home
Class 12
MATHS
If ( 1+ sin A ) ( 1 + sin B ) ( 1 + sin ...

If `( 1+ sin A ) ( 1 + sin B ) ( 1 + sin C ) = ( 1 - sin A ) ( 1- sin B ) ( 1- sin C )`, then each side is equal to

A

`+-` sin A sin B sinC

B

`+-` cos A cos B cos C

C

`+-` sin A cos B cos C

D

`+-` cos A sin B sin C

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( (1 + \sin A)(1 + \sin B)(1 + \sin C) = (1 - \sin A)(1 - \sin B)(1 - \sin C) \), we will follow these steps: ### Step 1: Define the expression Let us define the left-hand side and right-hand side of the equation as \( k \): \[ k = (1 + \sin A)(1 + \sin B)(1 + \sin C) = (1 - \sin A)(1 - \sin B)(1 - \sin C) \] ### Step 2: Square both sides To eliminate the products, we can square both sides: \[ k^2 = \left((1 + \sin A)(1 + \sin B)(1 + \sin C)\right) \left((1 - \sin A)(1 - \sin B)(1 - \sin C)\right) \] ### Step 3: Simplify the products Using the identity \( (1 + x)(1 - x) = 1 - x^2 \), we can simplify: \[ k^2 = (1 + \sin A)(1 - \sin A) \cdot (1 + \sin B)(1 - \sin B) \cdot (1 + \sin C)(1 - \sin C) \] This becomes: \[ k^2 = (1 - \sin^2 A)(1 - \sin^2 B)(1 - \sin^2 C) \] ### Step 4: Use the Pythagorean identity Recall that \( 1 - \sin^2 x = \cos^2 x \). Therefore, we can rewrite the expression: \[ k^2 = \cos^2 A \cdot \cos^2 B \cdot \cos^2 C \] ### Step 5: Take the square root Taking the square root of both sides gives us: \[ k = \pm \cos A \cdot \cos B \cdot \cos C \] ### Conclusion Thus, we find that: \[ (1 + \sin A)(1 + \sin B)(1 + \sin C) = (1 - \sin A)(1 - \sin B)(1 - \sin C) = \pm \cos A \cdot \cos B \cdot \cos C \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (1) TRUE AND FALSE|5 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (1) FILL IN THE BLANKS|2 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

(1 + sin A) (1 + sin B) (1 + sin C) = (1-sin A) (1-sin B) (1-sin C) = k rArr k

If ^( If )(1+sin A)(1+sin B)(I+sin C)=(1-sin A)(1-sin B)(1-sin C) ,then each side is equal to

In a triangle ABC, if cos A cos B+sin A sin B sin C=1, then a:b:c is equal to

√(1+sin θ) ( 1 - sin θ) is equal to

If A, B and C are the angles of a triangle and |(1,1,1),(1 + sin A,1 + sin B,1 + sin C),(sin A + sin^(2) A,sin B + sin^(2)B,sin C + sin^(2) C)|= 0 , then the triangle ABC is

If A+B=(pi)/(2) and sin A+sin B=1 then sin2A is equal to

cos A + cos B + cos C = 1 + 4sin ((A) / (2)) sin ((B) / (2)) sin ((C) / (2))

Prove that (1 + sin A) / (cos A) + (cos B) / (1-sin B) = (2sin A-2sin B) / (sin (AB) + cos A-cos B)

det [[1,1,1sin A, sin B, sin Csin ^ (2) A, sin ^ (2) B, sin ^ (2) C]] =

Let a= ( 2 sin x )/(1 + sin x + cos x ) and b = ( c )/(1+ sin x ) . Then a = b , if c= ?