Home
Class 12
MATHS
If ( sec theta + tan theta ) ( sec phi +...

If `( sec theta + tan theta ) ( sec phi + tan phi ) ( sec Psi + tan Psi ) = tan theta . tan phi . tan Psi `, then `( sec theta - tan theta ) ( sec phi - tan phi ) ( sec Psi - tan Psi ) =`

A

`cot theta cot phi cot Psi`

B

`tan theta tan phi tan Psi`

C

`tan theta + tan phi + tan Psi`

D

`cot theta + cot phi + cot Psi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(( \sec \theta + \tan \theta )( \sec \phi + \tan \phi )( \sec \psi + \tan \psi ) = \tan \theta \tan \phi \tan \psi\), we need to find the value of \(( \sec \theta - \tan \theta )( \sec \phi - \tan \phi )( \sec \psi - \tan \psi )\). ### Step 1: Recall the identity We start by recalling the trigonometric identity: \[ \sec^2 x - \tan^2 x = 1 \] This can be factored as: \[ (\sec x - \tan x)(\sec x + \tan x) = 1 \] ### Step 2: Express \(\sec x - \tan x\) From the identity, we can express \(\sec x - \tan x\) as: \[ \sec x - \tan x = \frac{1}{\sec x + \tan x} \] ### Step 3: Apply the identity to each term Using the identity for each angle: \[ \sec \theta - \tan \theta = \frac{1}{\sec \theta + \tan \theta} \] \[ \sec \phi - \tan \phi = \frac{1}{\sec \phi + \tan \phi} \] \[ \sec \psi - \tan \psi = \frac{1}{\sec \psi + \tan \psi} \] ### Step 4: Substitute into the expression Now we substitute these into the expression we want to find: \[ (\sec \theta - \tan \theta)(\sec \phi - \tan \phi)(\sec \psi - \tan \psi) = \left(\frac{1}{\sec \theta + \tan \theta}\right)\left(\frac{1}{\sec \phi + \tan \phi}\right)\left(\frac{1}{\sec \psi + \tan \psi}\right) \] ### Step 5: Combine the fractions This simplifies to: \[ \frac{1}{(\sec \theta + \tan \theta)(\sec \phi + \tan \phi)(\sec \psi + \tan \psi)} \] ### Step 6: Substitute the given equation From the given equation, we know: \[ (\sec \theta + \tan \theta)(\sec \phi + \tan \phi)(\sec \psi + \tan \psi) = \tan \theta \tan \phi \tan \psi \] Thus, we can substitute this into our expression: \[ \frac{1}{\tan \theta \tan \phi \tan \psi} \] ### Step 7: Convert to cotangent We can express this as: \[ \frac{1}{\tan \theta} \cdot \frac{1}{\tan \phi} \cdot \frac{1}{\tan \psi} = \cot \theta \cdot \cot \phi \cdot \cot \psi \] ### Final Result Therefore, the value of \(( \sec \theta - \tan \theta )( \sec \phi - \tan \phi )( \sec \psi - \tan \psi )\) is: \[ \cot \theta \cdot \cot \phi \cdot \cot \psi \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (1) TRUE AND FALSE|5 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (1) FILL IN THE BLANKS|2 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

If sec theta + tan theta = 12.5 , then sec theta - tan theta = ?

If sec theta + tan theta = 4 , then sec theta- tan theta =?

If sec theta+tan theta=x then sec theta=

If sec theta+tan theta=2 , then sec theta-tan theta = ?

(1+sec theta-tan theta)/(1+sec theta+tan theta)=

If tan theta + sec theta = n, then sec ^(4) theta - tan ^(4) theta- 2 sec theta tan theta =

If sec theta + tan theta=(4)/(3) , then sec theta tan theta =_______

(tan theta+sec theta-1)/(tan theta-sec theta+1)

Prove that (1)/(sec theta - tan theta) = sec theta + tan theta