Home
Class 12
MATHS
( tan A + sec A -1) /( tan A - sec A +1)...

`( tan A + sec A -1) /( tan A - sec A +1) =`

A

`( 1+ cos A)/ ( sin A )`

B

`( 1+ sin A )/( cos A )`

C

` ( 1- cos A )/( 1+ cos A )`

D

`( 1+ sin A )/( 1-sin A )`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(( \tan A + \sec A - 1) / ( \tan A - \sec A + 1)\), we will convert the trigonometric functions into sine and cosine terms and simplify the expression step by step. ### Step 1: Rewrite the expression in terms of sine and cosine We know that: \[ \tan A = \frac{\sin A}{\cos A} \quad \text{and} \quad \sec A = \frac{1}{\cos A} \] Substituting these into the expression gives: \[ \frac{\frac{\sin A}{\cos A} + \frac{1}{\cos A} - 1}{\frac{\sin A}{\cos A} - \frac{1}{\cos A} + 1} \] ### Step 2: Combine the terms in the numerator and denominator The numerator becomes: \[ \frac{\sin A + 1 - \cos A}{\cos A} \] And the denominator becomes: \[ \frac{\sin A - 1 + \cos A}{\cos A} \] Thus, the entire expression simplifies to: \[ \frac{\sin A + 1 - \cos A}{\sin A - 1 + \cos A} \] ### Step 3: Simplify the expression further Now we can rewrite the expression as: \[ \frac{\sin A + 1 - \cos A}{\sin A - 1 + \cos A} \] ### Step 4: Rationalize the expression To simplify further, we can multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{(\sin A + 1 - \cos A)(\sin A - 1 - \cos A)}{(\sin A - 1 + \cos A)(\sin A - 1 - \cos A)} \] ### Step 5: Expand both the numerator and denominator Expanding the numerator: \[ (\sin A + 1 - \cos A)(\sin A - 1 - \cos A) = (\sin^2 A - \sin A - \sin A \cos A + \sin A + 1 - \cos A - \cos A \sin A + \cos A + \cos^2 A) \] The denominator simplifies to: \[ (\sin A - 1)^2 - \cos^2 A = \sin^2 A - 2\sin A + 1 - \cos^2 A \] ### Step 6: Use Pythagorean identity Using the identity \(\sin^2 A + \cos^2 A = 1\), we can simplify: \[ \sin^2 A - \cos^2 A = 1 - 2\sin A + 1 = 2 - 2\sin A \] ### Step 7: Final simplification After simplifying, we will arrive at: \[ \frac{1 + \sin A}{\cos A} \] ### Conclusion Thus, the final simplified expression is: \[ \frac{1 + \sin A}{\cos A} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (1) TRUE AND FALSE|5 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (1) FILL IN THE BLANKS|2 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

Prove that (1 + tan A - Sec A) xx (1 + tan A + sec A) = 2 tan

1/(sec A + tan A) = sec A - tan A

int(tan x+sec x-1)/(tan x-sec x+1)dx

What is the expression (tan x )/( 1 + sec x) - (tan x)/( 1 - sec x) equal to ?

Prove that: (sec theta + tan theta -1)/(tan theta - sec theta +1) = (cos theta)/(1- sin theta)

If tan y=(tan x+sec x-1)/(tan x-sec x+1) show that (dy)/(dx)=(1)/(2)

Prove that (sec A+1)/(tan A)=(tan A)/(sec A-1)

Find the value of 1 +(tan^2 A)/(1+sec A) 1 +(tan^2 A)/(1+sec A) का मान क्या होगा ?