Home
Class 12
MATHS
The expression cosec^(2)A cot^(2)A-sec...

The expression
`cosec^(2)A cot^(2)A-sec^(2)A tan^(2)A-(cot^(2)A-tan^(2)A)(sec^(2)A cosec^(2)A-1)` is equal to

A

`tan^(2) A- cot^(2)A`

B

`sec^(2) a - cosec^(2) A`

C

0

D

none

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (1) TRUE AND FALSE|5 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (1) FILL IN THE BLANKS|2 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

sec^(2) (tan^(-1) 2) + cosec^(2) (cot^(-1) 3) is equal to

(b) prove that tan^(2)A+cot^(2)A+2=sec^(2)A*cosec^(2)A

(sin A+cosec A)^(2)+(cos A+sec A)^(2)=7+tan^(2)A+cot^(2)A

(cot^(2)A*sec A)/(cos^(2)A*sin^(2)A)=sec A*cosec^(4)A

tan^(2)theta+cot^(2)theta+2=sec^(2)theta cosec^(2)theta

sec^(2)(tan^(-1)4)+cosec^(2)(cot^(-1)3) =

The value of tan^(2) (sec ^(-1) 2) + cot^(2) (cosec^(-1) 3) is equal to

sec^(2)(tan^(-1)2) +"cosec"^(2)(cot^(-1)3)=