Home
Class 12
MATHS
The value of e^(log(10) tan 1^(@) + log...

The value of `e^(log_(10) tan 1^(@) + log _(10) tan 2^(@) + log _(10) tan 3^(@) +"...."+ log_(10) tan 89^(@))` is

A

0

B

e

C

`1// e`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ e^{\log_{10} \tan 1^\circ + \log_{10} \tan 2^\circ + \log_{10} \tan 3^\circ + \ldots + \log_{10} \tan 89^\circ} \] ### Step 1: Simplifying the Power Expression We start by simplifying the expression in the exponent: \[ \log_{10} \tan 1^\circ + \log_{10} \tan 2^\circ + \ldots + \log_{10} \tan 89^\circ \] Using the property of logarithms that states \(\log_{b} a + \log_{b} c = \log_{b} (a \cdot c)\), we can combine the logarithms: \[ \log_{10} (\tan 1^\circ \cdot \tan 2^\circ \cdot \tan 3^\circ \cdots \tan 89^\circ) \] ### Step 2: Using Trigonometric Identities Next, we utilize the identity: \[ \tan(90^\circ - \theta) = \cot \theta \] This implies that: \[ \tan 89^\circ = \cot 1^\circ, \quad \tan 88^\circ = \cot 2^\circ, \quad \ldots, \quad \tan 46^\circ = \cot 44^\circ \] Thus, we can pair the terms: \[ \tan 1^\circ \tan 89^\circ = \tan 1^\circ \cot 1^\circ = 1 \] \[ \tan 2^\circ \tan 88^\circ = \tan 2^\circ \cot 2^\circ = 1 \] \[ \ldots \] \[ \tan 44^\circ \tan 46^\circ = \tan 44^\circ \cot 44^\circ = 1 \] ### Step 3: Counting the Pairs There are 44 pairs from \(\tan 1^\circ\) to \(\tan 44^\circ\) and their corresponding cotangent pairs from \(\tan 89^\circ\) to \(\tan 46^\circ\). The middle term, \(\tan 45^\circ\), is equal to 1. Thus, the product of all these terms is: \[ \tan 1^\circ \tan 89^\circ \cdot \tan 2^\circ \tan 88^\circ \cdots \tan 44^\circ \tan 46^\circ \cdot \tan 45^\circ = 1^{44} \cdot 1 = 1 \] ### Step 4: Final Calculation Now substituting back into the logarithm: \[ \log_{10} (\tan 1^\circ \cdot \tan 2^\circ \cdots \tan 89^\circ) = \log_{10} (1) = 0 \] So, the expression in the exponent simplifies to: \[ e^{0} = 1 \] ### Conclusion The value of the original expression is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (1) TRUE AND FALSE|5 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (1) FILL IN THE BLANKS|2 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

log_(10) tan 1^(@) + log_(10) tan 2^(@) +....+ log_(10) tan 89^(@) =

the value of e^(log_(10)tan1^(@)+log_(10)tan2^(@)+log_(10)tan3^(@)...+log_(10)tan89^(@))

The value of the expression log_(10) (tan 6^(@))+log_(10) (tan 12^(@))+log_(10) (tan 18^(@))+...+log_(10)(tan 84^(@)) is -

log_(10)tan1^(@).log_(10)tan2^(@)*log_(10)tan3^(@)........log_(10)tan50^(@)=0

If log_(10)tan 19^(@) + log_(10) tan 21^(@) + log_(10) tan 37^(@) + log_(10) tan 45^(@) + log_(10) tan 69^(@) + log_(10) tan 71^(@) + log_(10) tan 53^(@) = log_(10) (x)/(2) , then x = ______.

If log_(10) tan 31^(@) . log_(10)tan 32^(@) ... log_(10)tan 60^(@) = log10a , then a = ______.

Prove that : log_(10)tan1^(@)*log_(10)tan2^(@)...log_(10)tan89^(@)=0