Home
Class 12
MATHS
If x cancel(=) n pi where n is any inte...

If `x cancel(=) n pi ` where n is any integer and `( 1+ tan x )/ ( 1- tanx ) =1 + sin 2x`, then `tan x =`

A

1

B

`-1`

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \frac{1 + \tan x}{1 - \tan x} = 1 + \sin 2x \) under the condition that \( x \neq n\pi \) (where \( n \) is any integer), we will follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ \frac{1 + \tan x}{1 - \tan x} = 1 + \sin 2x \] Recall that \( \sin 2x = 2 \sin x \cos x \). Therefore, we can rewrite the right-hand side: \[ \frac{1 + \tan x}{1 - \tan x} = 1 + 2 \sin x \cos x \] ### Step 2: Express \( \tan x \) in terms of \( \sin x \) and \( \cos x \) We know that \( \tan x = \frac{\sin x}{\cos x} \). Substitute this into the left-hand side: \[ \frac{1 + \frac{\sin x}{\cos x}}{1 - \frac{\sin x}{\cos x}} = \frac{\cos x + \sin x}{\cos x - \sin x} \] ### Step 3: Set up the equation Now we have: \[ \frac{\cos x + \sin x}{\cos x - \sin x} = 1 + 2 \sin x \cos x \] ### Step 4: Cross-multiply to eliminate the fraction Cross-multiplying gives us: \[ \cos x + \sin x = (1 + 2 \sin x \cos x)(\cos x - \sin x) \] ### Step 5: Expand the right-hand side Expanding the right-hand side: \[ \cos x + \sin x = \cos x - \sin x + 2 \sin x \cos^2 x - 2 \sin^2 x \cos x \] ### Step 6: Rearranging the equation Rearranging terms leads to: \[ \cos x + \sin x - \cos x + \sin x = 2 \sin x \cos^2 x - 2 \sin^2 x \cos x \] This simplifies to: \[ 2 \sin x = 2 \sin x \cos^2 x - 2 \sin^2 x \cos x \] ### Step 7: Factor out common terms Factoring out \( 2 \sin x \) from both sides gives: \[ 2 \sin x (1 - \cos^2 x + \sin x \cos x) = 0 \] This implies either \( \sin x = 0 \) or \( 1 - \cos^2 x + \sin x \cos x = 0 \). ### Step 8: Solve for \( \tan x \) 1. If \( \sin x = 0 \), then \( x = n\pi \) (which we discard since \( x \neq n\pi \)). 2. For the second equation, we can use \( \sin^2 x + \cos^2 x = 1 \) to find \( \tan x \). ### Step 9: Find \( \tan x \) From the equation \( \sin x + \cos x = 0 \), we can divide by \( \cos x \) (assuming \( \cos x \neq 0 \)): \[ \tan x = -1 \] Thus, the final solution is: \[ \tan x = -1 \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (1) TRUE AND FALSE|5 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (1) FILL IN THE BLANKS|2 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

Evaluate tan{(-1)^(n)(pi)/(4)} where n is an integer

int sin^(-1)((2tanx )/(1+tan^(2)x))dx = ?

If tan^(-1)(a/x) + tan^(-1)(b/x) =pi/2 , then: x=

x + y = (4n + 3) (pi) / (4), n in Z rArr ((1 + tan x) (1 + tan y)) / (tan x tan y) =

If tan^(-1)(a/x) + tan^(-1)(b/x) = pi/2 , then: x=……

tan4x = (4tanx (1-tan^2x))/(1-6tan^2x+tan^4x)

If (d)/(dx)(x-tanx+(1)/(3)tan^(3)x)=tan^(n)x," then "n=

For a in [pi , 2 pi] and n in Z the critical points of g f(x) = 1/3 sin a tan ^3 "" x + (sin a-1)tan x + sqrt(a-2)/(8-a) are

Solve sin x tan x -sin x+ tan x-1=0 for x in [0, 2pi] .