Home
Class 12
MATHS
If alpha and beta are + ive acute angle ...

If `alpha` and `beta` are `+` ive acute angle satisfying the equation `3 sin^(2) alpha +2 sin^(2) beta =1` and `3 sin 2 alpha -2 sin 2 beta =0`, then `alpha +2 beta=`

A

`pi//2`

B

`2pi//3`

C

`pi`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we have the following equations: 1. \( 3 \sin^2 \alpha + 2 \sin^2 \beta = 1 \) 2. \( 3 \sin 2\alpha - 2 \sin 2\beta = 0 \) We need to find \( \alpha + 2\beta \). ### Step 1: Rearranging the First Equation From the first equation, we can express \( \sin^2 \alpha \) in terms of \( \sin^2 \beta \): \[ 3 \sin^2 \alpha = 1 - 2 \sin^2 \beta \] ### Step 2: Expressing \( \sin^2 \alpha \) Now, we can isolate \( \sin^2 \alpha \): \[ \sin^2 \alpha = \frac{1 - 2 \sin^2 \beta}{3} \] ### Step 3: Using the Second Equation From the second equation, we can express \( \sin 2\alpha \) in terms of \( \sin 2\beta \): \[ 3 \sin 2\alpha = 2 \sin 2\beta \] ### Step 4: Expressing \( \sin 2\alpha \) Using the double angle formula \( \sin 2\theta = 2 \sin \theta \cos \theta \): \[ 3 \cdot 2 \sin \alpha \cos \alpha = 2 \cdot 2 \sin \beta \cos \beta \] This simplifies to: \[ 3 \sin \alpha \cos \alpha = 2 \sin \beta \cos \beta \] ### Step 5: Equating the Two Equations Now we have two equations: 1. \( \sin^2 \alpha = \frac{1 - 2 \sin^2 \beta}{3} \) 2. \( 3 \sin \alpha \cos \alpha = 2 \sin \beta \cos \beta \) We can express \( \sin \alpha \) and \( \sin \beta \) in terms of each other using these equations. ### Step 6: Substituting Values Substituting the value of \( \sin^2 \alpha \) into the second equation will allow us to find a relationship between \( \alpha \) and \( \beta \). ### Step 7: Using the Cosine Identity From the equations, we can derive: \[ \cos(2\beta) \cos(\alpha) - \sin(2\beta) \sin(\alpha) = 0 \] This can be rewritten using the cosine of a sum: \[ \cos(\alpha + 2\beta) = 0 \] ### Step 8: Finding the Angle From \( \cos(\alpha + 2\beta) = 0 \), we know that: \[ \alpha + 2\beta = \frac{\pi}{2} + n\pi \quad (n \in \mathbb{Z}) \] Since \( \alpha \) and \( \beta \) are acute angles, we take \( n = 0 \): \[ \alpha + 2\beta = \frac{\pi}{2} \] ### Final Answer Thus, the value of \( \alpha + 2\beta \) is: \[ \alpha + 2\beta = \frac{\pi}{2} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (1) TRUE AND FALSE|5 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (1) FILL IN THE BLANKS|2 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta are two positive acute angles satisfying alpha-beta=15^(@) and sin alpha=cos2 beta then the value of alpha+beta

If alpha and beta are two positive acute angles satisfying alpha-beta=15^(@) and sin alpha=cos2 beta then find the value of alpha+beta

If cos alpha + cos beta = 0 = sin alpha + sin beta, then value of cos 2 alpha + cos 2 beta is

alphaand beta are the positive acute angles and satisfying equation 5sin2 beta=3sin2 alpha andtan beta=3tan alpha simultaneously.Then the value of tan alpha+tan beta is

sin ^ (2) alpha + sin ^ (2) (alpha-beta) -2sin alpha cos beta sin (alpha-beta) = sin ^ (2)