Home
Class 12
MATHS
If f(x) = ( 10 cos x + 5 cos 3x + cos 5x...

If `f(x) = ( 10 cos x + 5 cos 3x + cos 5x)/(cos 6x + 6cos 4x + 15 cos 2x +10)` then `f(0)+f'(0) + f''(0)=`

A

`- ( 1)/( 2)`

B

0

C

`(1)/(2)`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate \( f(0) + f'(0) + f''(0) \) for the function \[ f(x) = \frac{10 \cos x + 5 \cos 3x + \cos 5x}{\cos 6x + 6 \cos 4x + 15 \cos 2x + 10} \] ### Step 1: Evaluate \( f(0) \) First, we calculate \( f(0) \): \[ f(0) = \frac{10 \cos(0) + 5 \cos(0) + \cos(0)}{\cos(0) + 6 \cos(0) + 15 \cos(0) + 10} \] Since \( \cos(0) = 1 \): \[ f(0) = \frac{10 \cdot 1 + 5 \cdot 1 + 1}{1 + 6 \cdot 1 + 15 \cdot 1 + 10} = \frac{10 + 5 + 1}{1 + 6 + 15 + 10} = \frac{16}{32} = \frac{1}{2} \] ### Step 2: Differentiate \( f(x) \) to find \( f'(x) \) Using the quotient rule: \[ f'(x) = \frac{(g(x) \cdot f'(x) - f(x) \cdot g'(x))}{(g(x))^2} \] where \( f(x) = 10 \cos x + 5 \cos 3x + \cos 5x \) and \( g(x) = \cos 6x + 6 \cos 4x + 15 \cos 2x + 10 \). #### Calculate \( f'(0) \) 1. Differentiate \( f(x) \): - \( f'(x) = -10 \sin x - 15 \sin 3x - 5 \sin 5x \) - \( g'(x) = -6 \sin 6x - 24 \sin 4x - 30 \sin 2x \) 2. Evaluate \( f'(0) \): - \( f'(0) = -10 \sin(0) - 15 \sin(0) - 5 \sin(0) = 0 \) - \( g'(0) = -6 \sin(0) - 24 \sin(0) - 30 \sin(0) = 0 \) Using L'Hôpital's Rule since both \( f(0) \) and \( g(0) \) are 0: \[ f'(0) = \lim_{x \to 0} \frac{f'(x)}{g'(x)} = \frac{0}{0} \] ### Step 3: Differentiate again to find \( f''(x) \) 1. Differentiate \( f'(x) \) to find \( f''(x) \): - \( f''(x) = -10 \cos x - 45 \cos 3x - 25 \cos 5x \) 2. Evaluate \( f''(0) \): - \( f''(0) = -10 \cdot 1 - 45 \cdot 1 - 25 \cdot 1 = -10 - 45 - 25 = -80 \) ### Step 4: Combine results Now, we combine \( f(0) \), \( f'(0) \), and \( f''(0) \): \[ f(0) + f'(0) + f''(0) = \frac{1}{2} + 0 - 80 = \frac{1}{2} - 80 = \frac{1 - 160}{2} = \frac{-159}{2} \] ### Final Answer Thus, \[ f(0) + f'(0) + f''(0) = \frac{-159}{2} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (1) TRUE AND FALSE|5 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (1) FILL IN THE BLANKS|2 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

f(x)=(10cos x+5cos3x+cos5x)/(cos6x+6cos4x+15cos2x+10) then find the value of (0)+f'(0)+f'(0)

If f(x) = (1+sin x - cos x)/(1- sin x - cos x ) , x != 0 is continuous at x = 0 , then : f(0) =

Prove that 2cosx. Cos 3x- 2cos 5x. Cos 7x- cos 4x + cos12x=0 .

Prove that 1 + cos 2x + cos 4x + cos 6x = 4 cos x *cos 2x *cos 3x .

If f(x) =(1+sin x - cos x)/(1-sin x - cos x ), x != 0 , is continuous at x = 0 , then f(0) = ………

If f(x)=cos x cos2x cos4x cos8x cos16x then

The expression (cos 6x+6cos 4x+15 cos 2x+10)/(cos 5x+5 cos 3x+10 cos x)

If f(x)=cos x cos2x cos4x cos8x cos16x then f'((pi)/(4)) equals