Home
Class 12
MATHS
If sin x + sin^(2) x =1, then cos^(8) x ...

If `sin x + sin^(2) x =1`, then `cos^(8) x + 2 cos ^(6) x+ cos^(4) x`

A

0

B

`-1`

C

2

D

1

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (1) TRUE AND FALSE|5 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (1) FILL IN THE BLANKS|2 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

If sin x+sin^(2)=1, then cos^(8)x+2cos^(6)x+cos^(4)x=

If sin x+sin^(2)x=1, then cos^(8)x+2cos^(6)x+cos^(4)x=(A)2(B)1(C)3 (D) (1)/(2)

If sin x + sin ^(2) x=1, then the value of cos ^(12) x+3 cos ^(10) x+3 cos ^(8) x + cos ^(6) x-2 is equal to

If sin x+sin^(2)x=1 then write the value of cos^(8)x+2cos^(6)x+cos^(4)x

If "sin" x + "sin"^(2) x = 1 show that: cos^(4)x + cos^(2)x = 1 (ii) If "sin" x + cos x =sqrt(2) cos x show that: sqrt2 sin x = cos x - sin x

If sin x + sin^(2)x = 1 , then what is the value of cos^(8)x + 2 cos^(6)x + cos^(4)x ?

sin x+sin^(2)x=1, then value of cos^(6)x+cos^(2)x-sin x is

if sin x+sin^(2)x=1 then cos^(12)x+3cos^(10)x+3cos^(8)x+cos^(6)x=

int (1) / (sin ^ (4) x + sin ^ (2) x cos ^ (2) x + cos ^ (4) x) dx