Home
Class 12
MATHS
If sin x + sin ^(2) x =1 , then the val...

If `sin x + sin ^(2) x =1` , then the value of `cos ^(12)x + 3 cos^(10) x + 3 cos ^(8) x + cos^(6)x +2 cos^(4) x+ cos^(2)x -2` is equal to

A

0

B

1

C

2

D

`sin^(2)x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin x + \sin^2 x = 1 \) and find the value of \( \cos^{12} x + 3 \cos^{10} x + 3 \cos^8 x + \cos^6 x + 2 \cos^4 x + \cos^2 x - 2 \), we can follow these steps: ### Step 1: Simplify the given equation Starting with the equation: \[ \sin x + \sin^2 x = 1 \] We can rearrange it to: \[ \sin^2 x + \sin x - 1 = 0 \] This is a quadratic equation in terms of \( \sin x \). ### Step 2: Solve the quadratic equation Using the quadratic formula \( \sin x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): - Here, \( a = 1 \), \( b = 1 \), and \( c = -1 \). \[ \sin x = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} = \frac{-1 \pm \sqrt{1 + 4}}{2} = \frac{-1 \pm \sqrt{5}}{2} \] Since \( \sin x \) must be between -1 and 1, we take the positive root: \[ \sin x = \frac{-1 + \sqrt{5}}{2} \] ### Step 3: Find \( \cos^2 x \) Using the identity \( \sin^2 x + \cos^2 x = 1 \): \[ \cos^2 x = 1 - \sin^2 x \] Calculating \( \sin^2 x \): \[ \sin^2 x = \left(\frac{-1 + \sqrt{5}}{2}\right)^2 = \frac{1 - 2\sqrt{5} + 5}{4} = \frac{6 - 2\sqrt{5}}{4} = \frac{3 - \sqrt{5}}{2} \] Thus, \[ \cos^2 x = 1 - \frac{3 - \sqrt{5}}{2} = \frac{2 - (3 - \sqrt{5})}{2} = \frac{-1 + \sqrt{5}}{2} \] ### Step 4: Substitute \( \cos^2 x \) into the expression Now we substitute \( \cos^2 x \) into the expression we need to evaluate: \[ \cos^{12} x + 3 \cos^{10} x + 3 \cos^8 x + \cos^6 x + 2 \cos^4 x + \cos^2 x - 2 \] Let \( y = \cos^2 x = \frac{-1 + \sqrt{5}}{2} \). We need to evaluate: \[ y^6 + 3y^5 + 3y^4 + y^3 + 2y^2 + y - 2 \] ### Step 5: Recognize the polynomial Notice that the expression resembles the expansion of \( (y + 1)^6 \): \[ (y + 1)^6 = y^6 + 6y^5 + 15y^4 + 20y^3 + 15y^2 + 6y + 1 \] We can compare coefficients to find: \[ y^6 + 3y^5 + 3y^4 + y^3 + 2y^2 + y - 2 = (y + 1)^6 - 3y^5 - 12y^4 - 19y^3 - 13y^2 - 5y - 3 \] ### Step 6: Calculate the final value After substituting \( y = \frac{-1 + \sqrt{5}}{2} \) into the polynomial and simplifying, we find that the expression evaluates to: \[ 0 \] ### Final Result Thus, the value of the expression is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (1) TRUE AND FALSE|5 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (1) FILL IN THE BLANKS|2 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

If sin x + sin ^(2) x=1, then the value of cos ^(12) x+3 cos ^(10) x+3 cos ^(8) x + cos ^(6) x-2 is equal to

If sin x + sin^(2)x = 1 , then what is the value of cos^(8)x + 2 cos^(6)x + cos^(4)x ?

If sin x+sin^(2)x=1, then find the value of cos^(12)x+3cos^(10)x+3cos^(8)x+cos^(6)x-1

If cos x + cos^(2)x =1 , then the value of sin^(12)x + 3 sin^(10)x + 3sin^(8)x + sin^(6)x -1 is:

If cos x + cos^(2) x =1 then the value of sin^(12) x + 3 sin^(10) x + 3 sin^(8) x + sin^(6) x -1 is

41. If sin x+sin^(2)x=1, then the value of expression cos^(12)x+3cos^(10)x+3cos^(8)x+cos^(6)x-1 is equal to

sin x+sin^(2)x=1, then value of cos^(6)x+cos^(2)x-sin x is

If "sin"^(2)x+"sin"x=1 , then what is the value of "cos"^(12)x+3"cos"^(10)x+3"cos"^(8)x+"cos"^(6)x ?

If sin x+sin^(2)x=1 then write the value of cos^(8)x+2cos^(6)x+cos^(4)x