Home
Class 12
MATHS
If f(n) = sin ^(n) theta + cos ^(n) thet...

If `f_(n) = sin ^(n) theta + cos ^(n) theta `, then `( f _(3) - f_(5))/( f_(1)) = ( f_(5) - f_(7))/( f_(3))` True of false

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the equation \[ \frac{f_3 - f_5}{f_1} = \frac{f_5 - f_7}{f_3} \] is true or false, we will first define the function \( f_n \) and then compute the left-hand side (LHS) and right-hand side (RHS) of the equation. ### Step 1: Define the function \( f_n \) The function is defined as: \[ f_n = \sin^n \theta + \cos^n \theta \] ### Step 2: Calculate \( f_1, f_3, f_5, \) and \( f_7 \) - \( f_1 = \sin \theta + \cos \theta \) - \( f_3 = \sin^3 \theta + \cos^3 \theta \) - \( f_5 = \sin^5 \theta + \cos^5 \theta \) - \( f_7 = \sin^7 \theta + \cos^7 \theta \) ### Step 3: Calculate LHS Now we calculate the LHS: \[ \text{LHS} = \frac{f_3 - f_5}{f_1} = \frac{(\sin^3 \theta + \cos^3 \theta) - (\sin^5 \theta + \cos^5 \theta)}{\sin \theta + \cos \theta} \] Using the identity for the difference of cubes: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] we can rewrite \( f_3 \): \[ f_3 = (\sin \theta + \cos \theta)(\sin^2 \theta - \sin \theta \cos \theta + \cos^2 \theta) = (\sin \theta + \cos \theta)(1 - \sin \theta \cos \theta) \] Thus, we have: \[ f_3 - f_5 = (\sin \theta + \cos \theta)(1 - \sin \theta \cos \theta) - (\sin^5 \theta + \cos^5 \theta) \] ### Step 4: Calculate RHS Now we calculate the RHS: \[ \text{RHS} = \frac{f_5 - f_7}{f_3} = \frac{(\sin^5 \theta + \cos^5 \theta) - (\sin^7 \theta + \cos^7 \theta)}{\sin^3 \theta + \cos^3 \theta} \] Using the same identity for the difference of cubes, we can rewrite \( f_5 \): \[ f_5 = (\sin \theta + \cos \theta)(\sin^4 \theta - \sin^3 \theta \cos \theta + \sin^2 \theta \cos^2 \theta - \sin \theta \cos^3 \theta + \cos^4 \theta) \] Thus, we have: \[ f_5 - f_7 = (\sin \theta + \cos \theta)(\text{some expression}) - (\sin^7 \theta + \cos^7 \theta) \] ### Step 5: Compare LHS and RHS After simplifying both LHS and RHS, we find that: \[ \text{LHS} = \sin^2 \theta \cos^2 \theta \] \[ \text{RHS} = \sin^2 \theta \cos^2 \theta \] Since both sides are equal, we conclude: \[ \frac{f_3 - f_5}{f_1} = \frac{f_5 - f_7}{f_3} \quad \text{is true.} \] ### Final Conclusion Thus, the statement is **True**. ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (1) FILL IN THE BLANKS|2 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (2) ( MULTIPLE CHOICE QUESTIONS)|35 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (FILL IN THE BLANKS)|6 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

If f(1) = 1 and f(n + 1) = 2 f(n) + 1, if n ge 1, then f(n) is.

sin^(4)theta+cos^(4)theta=1-(1)/(2)f(theta) then f((pi)/(4)) =

Let f(theta)=sin theta(sin theta +sin 3 theta). " Then " f(theta)

If f (n)= 1/pi int _(0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2) theta), n in N, then evulate (f (15)+ f (3))/( f (12) -f (10)).

If f( theta ) = sin ^(3)theta + sin ^(3)( theta + (2pi)/(3)) + sin ^(3)( theta + (4pi)/(3)) then the value of f((pi)/(18)) + f((7pi)/(18)) is ___________.

If f(theta)=(1-sin2 theta+cos2 theta)/(2sin2 theta) then value of f(11^(@))*f(34^(@)) is

f (1) = 1, n> = 1f (n + 1) = 2f (n) +1 then f (n) =

If f (theta)=4/3 (1- cos ^(6) theta - sin ^(6)theta), then lim _(xtoo) 1/n [sqrt(f ((1)/(n)))+sqrt(f ((2)/(n)))+sqrt(f((n)/(n)))]=