Home
Class 12
MATHS
The inequality 2^(sintheta) + 2 ^(cos th...

The inequality `2^(sintheta) + 2 ^(cos theta ) ge 2^(1- ( 1//sqrt(2)))` holds for all real values of `theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( 2^{\sin \theta} + 2^{\cos \theta} \geq 2^{1 - \frac{1}{\sqrt{2}}} \) for all real values of \( \theta \), we can use the Arithmetic Mean-Geometric Mean (AM-GM) inequality. ### Step-by-Step Solution: 1. **Apply the AM-GM Inequality**: According to the AM-GM inequality, for any non-negative numbers \( a \) and \( b \): \[ \frac{a + b}{2} \geq \sqrt{ab} \] In our case, let \( a = 2^{\sin \theta} \) and \( b = 2^{\cos \theta} \). Thus, we have: \[ \frac{2^{\sin \theta} + 2^{\cos \theta}}{2} \geq \sqrt{2^{\sin \theta} \cdot 2^{\cos \theta}} \] 2. **Simplify the Right Side**: The right-hand side can be simplified: \[ \sqrt{2^{\sin \theta} \cdot 2^{\cos \theta}} = \sqrt{2^{\sin \theta + \cos \theta}} = 2^{\frac{\sin \theta + \cos \theta}{2}} \] Therefore, we can rewrite the inequality as: \[ 2^{\sin \theta} + 2^{\cos \theta} \geq 2 \cdot 2^{\frac{\sin \theta + \cos \theta}{2}} = 2^{1 + \frac{\sin \theta + \cos \theta}{2}} \] 3. **Estimate the Maximum Value of \( \sin \theta + \cos \theta \)**: The maximum value of \( \sin \theta + \cos \theta \) occurs when \( \theta = \frac{\pi}{4} \) or \( \theta = \frac{5\pi}{4} \), giving: \[ \sin \theta + \cos \theta \leq \sqrt{2} \] Therefore, we have: \[ \frac{\sin \theta + \cos \theta}{2} \leq \frac{\sqrt{2}}{2} \] 4. **Substitute the Maximum Value**: Substituting this maximum value into our inequality gives: \[ 2^{\sin \theta} + 2^{\cos \theta} \geq 2^{1 + \frac{\sqrt{2}}{2}} \] 5. **Compare with the Right-Hand Side**: The right-hand side of our original inequality is \( 2^{1 - \frac{1}{\sqrt{2}}} \). We need to show: \[ 2^{1 + \frac{\sqrt{2}}{2}} \geq 2^{1 - \frac{1}{\sqrt{2}}} \] This simplifies to: \[ 1 + \frac{\sqrt{2}}{2} \geq 1 - \frac{1}{\sqrt{2}} \] Rearranging gives: \[ \frac{\sqrt{2}}{2} + \frac{1}{\sqrt{2}} \geq 0 \] This is true since both terms are positive. 6. **Conclusion**: Therefore, we conclude that: \[ 2^{\sin \theta} + 2^{\cos \theta} \geq 2^{1 - \frac{1}{\sqrt{2}}} \] holds for all real values of \( \theta \).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (3) ( MULTIPLE CHOICE QUESTIONS)|23 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (3) (FILL IN THE BLANKS)|2 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (2) ( MULTIPLE CHOICE QUESTIONS)|35 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

The inequality 2^(sin theta)+2^(cos theta)>=2^(1-(1)/(sqrt(2))), holds for all real values of theta

Prove that 2^(sin x) + 2^(cos x) ge 2^(1-1/sqrt2) for all real x.

The value of a+b such that the inequality ale 5 cos theta+3cos (theta+(pi)/(3))+3le b holds true for all the real values of theta is (equality holds on both sides atleast once for real values of theta )

If A= cos theta + 2 sqrt(2) sin theta , then for all real values of theta Find range of A

If cos 2 theta =(sqrt(2)+1)( cos theta -(1)/(sqrt(2))) , then the value of theta is