Home
Class 12
MATHS
4 ^(sin ^(2)x ) + 4 ^(cos ^(2)x ) ge4 fo...

`4 ^(sin ^(2)x ) + 4 ^(cos ^(2)x ) ge4` for all real x.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( 4^{\sin^2 x} + 4^{\cos^2 x} \geq 4 \) for all real \( x \), we can use the Arithmetic Mean-Geometric Mean (AM-GM) inequality. ### Step-by-Step Solution: 1. **Identify the terms**: We have two terms, \( a = 4^{\sin^2 x} \) and \( b = 4^{\cos^2 x} \). 2. **Apply the AM-GM inequality**: According to the AM-GM inequality, for any non-negative numbers \( a \) and \( b \): \[ \frac{a + b}{2} \geq \sqrt{ab} \] Thus, we can write: \[ \frac{4^{\sin^2 x} + 4^{\cos^2 x}}{2} \geq \sqrt{4^{\sin^2 x} \cdot 4^{\cos^2 x}} \] 3. **Simplify the right-hand side**: The right-hand side can be simplified using the property of exponents: \[ \sqrt{4^{\sin^2 x} \cdot 4^{\cos^2 x}} = \sqrt{4^{\sin^2 x + \cos^2 x}} = \sqrt{4^1} = \sqrt{4} = 2 \] 4. **Multiply both sides by 2**: Now we multiply both sides of the inequality by 2: \[ 4^{\sin^2 x} + 4^{\cos^2 x} \geq 2 \cdot 2 = 4 \] 5. **Conclusion**: Thus, we have shown that: \[ 4^{\sin^2 x} + 4^{\cos^2 x} \geq 4 \] for all real \( x \). ### Final Result: The inequality \( 4^{\sin^2 x} + 4^{\cos^2 x} \geq 4 \) holds true for all real \( x \).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (3) ( MULTIPLE CHOICE QUESTIONS)|23 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (3) (FILL IN THE BLANKS)|2 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (2) ( MULTIPLE CHOICE QUESTIONS)|35 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

If A= sin^(2) x + cos^(4) x then for all real x

Prove that 2^(sin x) + 2^(cos x) ge 2^(1-1/sqrt2) for all real x.

If A = "sin"^(2)x + cos^(4)x then for all realx :

If A=sin^(2)x+cos^(4)x, then for all real x:

If A=sin^(2)x+cos^(4)x, then for all real x: (1) (3)/(4)<=A<=1(2)(13)/(16)<=A<=1(3)1<=A<=2(4)(3)/(4)<=A<=(13)/(16)

If A = sin^(2)x + cos^(4)x , where x in a real number

int (1) / (sin ^ (4) x + sin ^ (2) x cos ^ (2) x + cos ^ (4) x) dx

Prove that -4 le cos 2x +3sin x le 17/8 for all real x.