Home
Class 12
MATHS
cos "" (pi )/( 65) cos "" ( 2pi )/( 65)c...

`cos "" (pi )/( 65) cos "" ( 2pi )/( 65)cos"" ( 4pi )/( 65) cos "" ( 8 pi )/(65)cos"" ( 16pi )/( 65) cos "" ( 32pi )/( 65)=`

A

`1//8`

B

`1//16`

C

`1//32`

D

`1//64`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \cos\left(\frac{\pi}{65}\right) \cos\left(\frac{2\pi}{65}\right) \cos\left(\frac{4\pi}{65}\right) \cos\left(\frac{8\pi}{65}\right) \cos\left(\frac{16\pi}{65}\right) \cos\left(\frac{32\pi}{65}\right), \] we can follow these steps: ### Step 1: Define A Let \( A = \frac{\pi}{65} \). Then we can rewrite the expression as: \[ \cos A \cos(2A) \cos(4A) \cos(8A) \cos(16A) \cos(32A). \] ### Step 2: Use the Cosine Product Formula We can use the formula for the product of cosines: \[ \cos A \cos(2A) \cos(4A) \cdots \cos(2^{n-1} A) = \frac{\sin(2^n A)}{2^n \sin A}. \] In our case, we have \( n = 6 \) since we have 6 terms. ### Step 3: Substitute n into the Formula Substituting \( n = 6 \) into the formula gives us: \[ \cos A \cos(2A) \cos(4A) \cos(8A) \cos(16A) \cos(32A) = \frac{\sin(2^6 A)}{2^6 \sin A} = \frac{\sin(64A)}{64 \sin A}. \] ### Step 4: Substitute A back into the Equation Now substituting \( A = \frac{\pi}{65} \): \[ \sin(64A) = \sin\left(64 \cdot \frac{\pi}{65}\right) = \sin\left(\frac{64\pi}{65}\right). \] ### Step 5: Use the Sine Identity Using the identity \( \sin(\pi - x) = \sin x \): \[ \sin\left(\frac{64\pi}{65}\right) = \sin\left(\pi - \frac{\pi}{65}\right) = \sin\left(\frac{\pi}{65}\right). \] ### Step 6: Substitute back into the Expression Now substituting this back into our expression: \[ \frac{\sin\left(\frac{64\pi}{65}\right)}{64 \sin\left(\frac{\pi}{65}\right)} = \frac{\sin\left(\frac{\pi}{65}\right)}{64 \sin\left(\frac{\pi}{65}\right)}. \] ### Step 7: Simplify The \( \sin\left(\frac{\pi}{65}\right) \) terms cancel out: \[ \frac{1}{64}. \] ### Final Answer Thus, the value of the original expression is: \[ \frac{1}{64}. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (6) ( MULTIPLE CHOICE QUESTIONS)|41 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (6) TRUE AND FALSE|8 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (4) FILL IN THE BLANKS|10 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

cos ((pi) / (65)) cos ((2 pi) / (65)) cos ((4 pi) / (65)) cos ((8 pi) / (65)) cos ((16 pi) / (65)) cos ((32 pi) / (64)) = (1) / (64)

cos""(2pi)/(15)cos""(4pi)/(15)cos""(8pi)/(15)cos""(16pi)/(15)=(1)/(16)

Knowledge Check

  • The value of cos "" (pi)/( 15) cos "" (2pi )/( 15)cos "" ( 3pi )/( 15)cos"" ( 4pi )/( 15)cos "" ( 5pi )/( 15) cos ""( 6pi)/( 15)cos "" ( 7 pi )/( 15) is

    A
    `1//2^(6)`
    B
    `1//2^(7)`
    C
    `1//2^(8)`
    D
    none of these
  • The value of cos "" (2pi)/( 15) cos "" (4pi)/( 15)cos "" ( 8 pi )/( 15)cos"" ( 16pi)/( 15) is

    A
    1
    B
    `1//2`
    C
    `1//4`
    D
    `1//16`
  • cos 0 + cos"" ( pi )/( 7 ) + cos "" ( 2pi )/(7) + cos"" ( 3pi)/(7)+ cos"" ( 4pi )/( 7 ) + cos "" ( 5pi )/( 7 ) + cos "" ( 6pi )/( 7) =

    A
    0
    B
    `- ( 1)/( 2)`
    C
    1
    D
    none
  • Similar Questions

    Explore conceptually related problems

    cos ""(2pi)/( 15) cos ""(4pi)/(15) cos ""(8pi)/(15) cos ""(16pi)/(15)=

    The value of cos "" (pi )/( 9 ) cos "" ( 2pi )/( 9 ) cos "" ( 3pi )/( 9 ) cos "" ( 4pi )/(9) is

    cos""(pi)/(15).cos""(2pi)/(15).cos""(4pi)/(15).cos""(8pi)/(15) is equal to

    The value of cos ( pi //5) cos ( 2pi //5) cos ( 4pi //5) cos ( 8pi //5) is

    The value of cos ( pi //5) cos ( 2pi //5) cos ( 4pi //5) cos ( 8pi //5) is