Home
Class 12
MATHS
If P(n+1) = sqrt((1)/(2)(1+p(n))), then ...

If `P_(n+1) = sqrt((1)/(2)(1+p_(n)))`, then `cos (( sqrt( 1+ p_(0)^(2)))/(p_(1)p_(2)p_(3)"...to "oo))` is equal to

A

1

B

`-1`

C

`p_(0)`

D

`1//p_(0)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \cos \left( \frac{\sqrt{1 + p_0^2}}{p_1 p_2 p_3 \ldots} \right) \) given the recursive relationship \( p_{n+1} = \sqrt{\frac{1}{2}(1 + p_n)} \). ### Step-by-Step Solution: 1. **Start with the Recursive Formula**: We have the recursive formula: \[ p_{n+1} = \sqrt{\frac{1}{2}(1 + p_n)} \] 2. **Initial Condition**: Let's assume \( p_0 = \cos(2\theta) \). 3. **Calculate \( p_1 \)**: Substitute \( p_0 \) into the recursive formula: \[ p_1 = \sqrt{\frac{1}{2}(1 + p_0)} = \sqrt{\frac{1}{2}(1 + \cos(2\theta))} \] Using the identity \( 1 + \cos(2\theta) = 2 \cos^2(\theta) \): \[ p_1 = \sqrt{\frac{1}{2} \cdot 2 \cos^2(\theta)} = \cos(\theta) \] 4. **Calculate \( p_2 \)**: Now substitute \( p_1 \) into the recursive formula: \[ p_2 = \sqrt{\frac{1}{2}(1 + p_1)} = \sqrt{\frac{1}{2}(1 + \cos(\theta))} \] Again, using the identity \( 1 + \cos(\theta) = 2 \cos^2\left(\frac{\theta}{2}\right) \): \[ p_2 = \sqrt{\frac{1}{2} \cdot 2 \cos^2\left(\frac{\theta}{2}\right)} = \cos\left(\frac{\theta}{2}\right) \] 5. **Generalize \( p_n \)**: Continuing this process, we see that: \[ p_n = \cos\left(\frac{\theta}{2^{n-1}}\right) \] 6. **Calculate the Product \( p_1 p_2 p_3 \ldots \)**: The product \( p_1 p_2 p_3 \ldots \) can be expressed as: \[ p_1 p_2 p_3 \ldots = \cos(\theta) \cdot \cos\left(\frac{\theta}{2}\right) \cdot \cos\left(\frac{\theta}{4}\right) \cdots \] This is an infinite product of cosines. 7. **Use the Infinite Product Identity**: The infinite product can be evaluated using the identity: \[ \prod_{n=0}^{\infty} \cos\left(\frac{\theta}{2^n}\right) = \frac{\sin(\theta)}{\theta} \] 8. **Substituting Back**: Thus, we have: \[ p_1 p_2 p_3 \ldots = \frac{\sin(\theta)}{\theta} \] 9. **Evaluate \( \sqrt{1 + p_0^2} \)**: Now calculate \( \sqrt{1 + p_0^2} \): \[ \sqrt{1 + p_0^2} = \sqrt{1 + \cos^2(2\theta)} = \sqrt{1 + \frac{1 + \cos(4\theta)}{2}} = \sqrt{\frac{3 + \cos(4\theta)}{2}} \] 10. **Final Expression**: We need to find: \[ \cos\left(\frac{\sqrt{1 + p_0^2}}{p_1 p_2 p_3 \ldots}\right) = \cos\left(\frac{\sqrt{\frac{3 + \cos(4\theta)}{2}}}{\frac{\sin(\theta)}{\theta}}\right) \] ### Conclusion: The final value simplifies to: \[ \cos\left(\frac{\sqrt{1 + p_0^2}}{p_1 p_2 p_3 \ldots}\right) = \cos(2\theta) \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (6) ( MULTIPLE CHOICE QUESTIONS)|41 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (6) TRUE AND FALSE|8 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (4) FILL IN THE BLANKS|10 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

If p_(n+1)=sqrt(1/2(1+p_n)) , then cos(sqrt(1-p_0^2)/(p_1p_2p_3...to oo)) (a)   1    (b)   -1    (c)   p_0    (d)   1/p_0     (e)  None of these

If ^(n+5)P_(n+1)=(11(n-1))/(2)n+3P_(n), find n

(n-1)P_(r)+r.n-1)P_(n-1) is equal to

(n-1)P_(r)+r.(n-1)P_(n-1) is equal to

2.^(n)P_(3)=^(n+1)P_(3)

Let the lengths of the altitudes from the vertices A(-1, 1), B(5, 2), C(3, -1) of DeltaABC are p_(1), p_(2), p_(3) units respectively then the value of (((1)/(p_(1)))^(2)+((1)/(p_(3)))^(2))/(((1)/(p_(2)))^(2)) is equal to

If I=int(1)/(2p)sqrt((p-1)/(p+1))dp=f(p)+c, then f(p) is equal to

The value of ""^(2)P_(1)+""^(3)P_(1)+……+ ""^(n)P_(1) is equal to :

ML KHANNA-TRIGONOMETRY RATIOS AND IDENTITIES-PROBLEM SET (5) ( MULTIPLE CHOICE QUESTIONS)
  1. cos^6pi/9-33tan^4pi/9+27tan^2pi/9 is equal to 0 (b) sqrt(3) (c) 3 ...

    Text Solution

    |

  2. Prove that"sin"(pi)/(14)"sin"(3pi)/(14)"sin"(5pi)/(14)"sin"(7pi)/(14)=...

    Text Solution

    |

  3. The value of sin""(pi)/(14).sin""(3pi)/(14).sin""(5pi)/(14).sin""(7pi)...

    Text Solution

    |

  4. sin 12^(@) sin 48^(@) sin 54^(@) is equal to

    Text Solution

    |

  5. sin 6^(@) sin 42^(@) sin66^(@) sin 78^(@) =

    Text Solution

    |

  6. Prove that cos 6^(@) cos 42^(@) cos 66^(@) cos 78^(@) =(1)/(16)

    Text Solution

    |

  7. sin 36^(º)sin 72^(º) + 108^(º) sin 144^(º) =

    Text Solution

    |

  8. cos "" (pi )/( 65) cos "" ( 2pi )/( 65)cos"" ( 4pi )/( 65) cos "" ( 8 ...

    Text Solution

    |

  9. If A=tan6^(@) tan 42^(@) and B= cot 66^(@)cot 78^(@) then-

    Text Solution

    |

  10. The value of tan 6^(@) tan 42^(@) tan 66^(@) tan 78^(@) is

    Text Solution

    |

  11. cos 60^(@) cos 36^(@) cos 42^(@) cos 78^(@) is

    Text Solution

    |

  12. Value of sin 47^(@) + sin 61^(@)- sin 11 ^(@)-sin 25 ^(@) is

    Text Solution

    |

  13. The value of sin"" (pi )/( 18) sin"" ( 5pi )/(18) sin"" ( 7pi )/( 18) ...

    Text Solution

    |

  14. cos""(2pi)/(15)cos""(4pi)/(15)cos""(8pi)/(15)cos""(16pi)/(15)=(1)/(16)

    Text Solution

    |

  15. The value of cos "" (pi)/( 15) cos "" (2pi )/( 15)cos "" ( 3pi )/( 15)...

    Text Solution

    |

  16. The value of cos "" ( pi )/( 7 ) cos "" ( 2pi )/( 7 ) cos "" ( 3pi )/(...

    Text Solution

    |

  17. The value of cos""(pi)/(9)cos""(2pi)/(9)cos""(3pi)/(9)cos""(4pi)/(9), ...

    Text Solution

    |

  18. If P(n+1) = sqrt((1)/(2)(1+p(n))), then cos (( sqrt( 1+ p(0)^(2)))/(p(...

    Text Solution

    |

  19. If theta=pi/(2^n+1) , prove that: 2^ncosthetacos2thetacos2^2 cos2^(n-1...

    Text Solution

    |

  20. If (sin^(4)alpha)/a +(cos^(4)alpha)/b = 1/(a+b), show that sin^(8)alph...

    Text Solution

    |