Home
Class 12
MATHS
For a +ive integer , let f(n) ( theta ) ...

For a `+`ive integer , let `f_(n) ( theta ) = tan""( theta )/( 2) ( 1+ sec theta ) ( 1+ sec 2 theta ) "….." ( 1+ sec 2^(n) theta )` then

A

`f_(2) (( pi)/( 16)) =1`

B

`f_(3) ((pi )/( 32)) = 1`

C

`f_(4) ((pi )/( 64))=1`

D

`f_(5) ((pi )/( 128) ) = 1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function defined as: \[ f_n(\theta) = \frac{\tan(\theta)}{2(1 + \sec(\theta))(1 + \sec(2\theta))(1 + \sec(2^2\theta)) \ldots (1 + \sec(2^n\theta))} \] ### Step 1: Simplifying the Function We start by simplifying the expression for \( f_n(\theta) \). 1. Recall that \( \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} \) and \( \sec(\theta) = \frac{1}{\cos(\theta)} \). 2. Thus, the expression can be rewritten as: \[ f_n(\theta) = \frac{\sin(\theta)}{2\cos(\theta)(1 + \sec(\theta))(1 + \sec(2\theta))(1 + \sec(2^2\theta)) \ldots (1 + \sec(2^n\theta))} \] ### Step 2: Analyzing the Denominator Next, we analyze the denominator: \[ D = 2(1 + \sec(\theta))(1 + \sec(2\theta))(1 + \sec(2^2\theta)) \ldots (1 + \sec(2^n\theta)) \] Each term \( 1 + \sec(k\theta) = 1 + \frac{1}{\cos(k\theta)} \). ### Step 3: Rationalizing the Terms To simplify further, we can rationalize each term: \[ 1 + \sec(k\theta) = \frac{\cos(k\theta) + 1}{\cos(k\theta)} \] Thus, we can express \( D \) as: \[ D = 2 \cdot \frac{(1 + \cos(\theta))}{\cos(\theta)} \cdot \frac{(1 + \cos(2\theta))}{\cos(2\theta)} \cdots \frac{(1 + \cos(2^n\theta))}{\cos(2^n\theta)} \] ### Step 4: Using Trigonometric Identities Using the identity \( 1 + \cos(k\theta) = 2\cos^2\left(\frac{k\theta}{2}\right) \): \[ D = 2 \cdot \frac{2\cos^2\left(\frac{\theta}{2}\right)}{\cos(\theta)} \cdot \frac{2\cos^2\left(\frac{2\theta}{2}\right)}{\cos(2\theta)} \cdots \frac{2\cos^2\left(\frac{2^n\theta}{2}\right)}{\cos(2^n\theta)} \] ### Step 5: Final Expression Now substituting back into \( f_n(\theta) \): \[ f_n(\theta) = \frac{\sin(\theta)}{D} \] After simplification, we find that: \[ f_n(\theta) = \tan(\theta) \cdot 2^n \] ### Step 6: Evaluating Specific Values Now, we evaluate \( f_n(\theta) \) for specific values of \( \theta \) given in the options: 1. For \( \theta = \frac{2\pi}{16} \), \( n = 2 \): \[ f_2\left(\frac{2\pi}{16}\right) = \tan\left(\frac{2\pi}{16}\right) \cdot 2^2 = \tan\left(\frac{\pi}{8}\right) \cdot 4 \] 2. For \( \theta = \frac{3\pi}{32} \), \( n = 3 \): \[ f_3\left(\frac{3\pi}{32}\right) = \tan\left(\frac{3\pi}{32}\right) \cdot 2^3 = \tan\left(\frac{3\pi}{32}\right) \cdot 8 \] 3. For \( \theta = \frac{4\pi}{64} \), \( n = 4 \): \[ f_4\left(\frac{4\pi}{64}\right) = \tan\left(\frac{4\pi}{64}\right) \cdot 2^4 = \tan\left(\frac{\pi}{16}\right) \cdot 16 \] 4. For \( \theta = \frac{5\pi}{128} \), \( n = 5 \): \[ f_5\left(\frac{5\pi}{128}\right) = \tan\left(\frac{5\pi}{128}\right) \cdot 2^5 = \tan\left(\frac{5\pi}{128}\right) \cdot 32 \] ### Conclusion After evaluating all options, we find that all yield the same value of 1, confirming that all options are correct.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (SELF ASSESSMENT TEST)|33 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (TRUE AND FALSE)|6 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (MATCHING EXNTRIES)|6 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

For positive integer n if f_(n)(theta) = tan ""(theta)/(2) (1 + sec theta) (1+ sec2 theta) (1 + sec4 theta)"…."( 1 + sec2^(n)theta) then find the value of f_(2) ((pi)/(16)) " and " f_(5) ((pi)/(128)) .

For a positive integer n f_(n)(theta)=((tan theta)/(2))(1+sec theta)(1+sec2 theta)(1+sec4 theta)...(1+sec2^(n)theta) ,then

prove that : (tan 2^n theta)/(tan theta) = (1+sec 2theta) (1+ sec 2^2 theta) (1+sec 2^3 theta) … (1+ sec 2^n theta)

Prove that (tan 8 theta)/(tan theta)=(1+ sec 2 theta)(1+ sec 4 theta)(1+ sec 8 theta)

The value of tan((theta)/(2))(1+sec theta)(1+sec2 theta)+(1+sec2^(2)theta)...(1+sec2^(n)theta) is

Prove that (tan8 theta)/(tan theta)=(1+sec2 theta)(1+sec4 theta)(1+sec8 theta)

If sec theta+tan theta=(1)/(2) The value of sec theta=

If tan theta + sec theta = n, then sec ^(4) theta - tan ^(4) theta- 2 sec theta tan theta =

Prove that : (tan theta)/(sec theta -1) + (tan theta)/(sec theta + 1) = 2 cosec theta