Home
Class 12
MATHS
If theta + phi = pi //4, then the value ...

If `theta + phi = pi //4`, then the value of `( 1+ tan theta ) // ( 1+ tan phi ) ` is `"……………"`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \frac{1 + \tan \theta}{1 + \tan \phi} \) given that \( \theta + \phi = \frac{\pi}{4} \), we can follow these steps: ### Step 1: Use the angle addition formula for tangent Since \( \theta + \phi = \frac{\pi}{4} \), we can express \( \tan(\theta + \phi) \) using the tangent addition formula: \[ \tan(\theta + \phi) = \frac{\tan \theta + \tan \phi}{1 - \tan \theta \tan \phi} \] ### Step 2: Substitute the known value We know that \( \tan\left(\frac{\pi}{4}\right) = 1 \). Therefore, we have: \[ 1 = \frac{\tan \theta + \tan \phi}{1 - \tan \theta \tan \phi} \] ### Step 3: Cross-multiply to simplify Cross-multiplying gives us: \[ 1 - \tan \theta \tan \phi = \tan \theta + \tan \phi \] ### Step 4: Rearranging the equation Rearranging the equation gives us: \[ 1 = \tan \theta + \tan \phi + \tan \theta \tan \phi \] ### Step 5: Expressing \( \tan \theta + \tan \phi \) From the equation \( 1 = \tan \theta + \tan \phi + \tan \theta \tan \phi \), we can express \( \tan \theta + \tan \phi \) as: \[ \tan \theta + \tan \phi = 1 - \tan \theta \tan \phi \] ### Step 6: Finding \( \frac{1 + \tan \theta}{1 + \tan \phi} \) Now we can find \( \frac{1 + \tan \theta}{1 + \tan \phi} \): \[ \frac{1 + \tan \theta}{1 + \tan \phi} = \frac{1 + \tan \theta}{1 + (1 - \tan \theta)} = \frac{1 + \tan \theta}{2 - \tan \theta} \] ### Step 7: Simplifying the expression This can be simplified further, but we can also directly substitute the values from our earlier steps. Since we know \( \tan \theta + \tan \phi = 1 - \tan \theta \tan \phi \), we can find the ratio: \[ \frac{1 + \tan \theta}{1 + \tan \phi} = \frac{1 + \tan \theta}{1 + (1 - \tan \theta)} = \frac{1 + \tan \theta}{2 - \tan \theta} \] ### Final Value After simplifying, we find that: \[ \frac{1 + \tan \theta}{1 + \tan \phi} = 1 \] ### Conclusion Thus, the value of \( \frac{1 + \tan \theta}{1 + \tan \phi} \) is \( 1 \). ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (TRUE AND FALSE)|6 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

If sin(theta+phi)=n sin(theta-phi), then the value of (tan theta)/(tan phi) is equal to

If tan theta = 1 and sin phi = (1)/( sqrt(2)) , then the value of cos (theta + phi) is

If theta+phi=(pi)/(3) where theta and phi are positive angles, then the maximum value of tan theta tan phi is equal to

If tan theta=3tan phi, then the maximum value of tan^(2)(theta-phi) is

If cos theta=(2cos phi-1)/(2-cos phi), then find the value of tan((theta)/(2))

If 2sec 2theta=tan phi+cotphi , then one of the values of theta+phi is

If theta+phi=(pi)/(4),then(1+tan theta)(1+tan phi) is equal to